# Clock analysis 

Viktor Engelmann

January 23, 2009


#### Abstract

In tenth grade I wrote a program to determine the times of the day at wich the short hand and long hand of the clock have a given angle $\alpha$ to each other. Lacking math skills, I made the program try out all 1440 minutes of a day and compare the angles at the given times. Today I have the neccessary math knowledge, to solve this Problem properly.


## 1 Calculating the time to a given angle

Observe that every minute the long hand of the clock turns by $\frac{360^{\circ}}{60}=6^{\circ}$. The short hand turns just by $\frac{360^{\circ}}{12.60}=0.5^{\circ}$ per minute and moves $\frac{360^{\circ}}{12}=30^{\circ}$ per hour. So if it is $h$ o'clock and $m$ minutes, the hands have the angles

$$
\begin{aligned}
s(h, m) & =30 h+0.5 m \\
l(h, m) & =6 m
\end{aligned}
$$

The angle between the hands is

$$
\begin{aligned}
\alpha & =s(h, m)-l(h, m) \\
& =30 h+0.5 m-6 m \\
\Leftrightarrow \alpha-30 h & =(0.5-6) m \\
\Leftrightarrow \frac{\alpha-30 h}{-5.5} & =\frac{30 h-\alpha}{5.5}=m
\end{aligned}
$$

This means that to determine the times of the day we simply have to replace $h$ by the availiable hours $\{0,1,2, \ldots, 11\}$ and calculate the minute $m$ for this particular hour.
Example: the hands have angle $\alpha=90^{\circ}$ at

$$
\begin{aligned}
& m_{0}=\frac{30 \cdot 0-90}{5.5}=-16 . \overline{36} \Rightarrow 11: 43: 38 . \overline{18} \\
& m_{1}=\frac{30 \cdot 1-90}{5.5}=-10 . \overline{90} \Rightarrow 00: 49: 05 . \overline{45} \\
& m_{2}=\frac{30 \cdot 2-90}{5.5}=-5 . \overline{45} \Rightarrow 01: 54: 32 . \overline{72} \\
& m_{3}=\frac{30 \cdot 3-90}{5.5}=0 \Rightarrow 03: 00: 00
\end{aligned}
$$

Consider that for example 2 o'clock $-5 . \overline{45}$ minutes is

$$
\begin{aligned}
& 1:(60-5 . \overline{45}) \\
= & 1: 54.54 \\
= & 1: 54+0 . \overline{54} \\
= & 1: 54: 60 \cdot 0 . \overline{54} \\
= & 1: 54: 32 . \overline{72}
\end{aligned}
$$

## 2 Calculating the repeating time of an angle

Now I was intrigued and wanted to know after what timespan the hands would have the same angle again. At hour $(h+1)$ the associated minute would have changed by $\Delta$ minutes:

$$
\begin{aligned}
\frac{30(h+1)-\alpha}{5.5} & =\Delta+\frac{30 h-\alpha}{5.5} \\
\Leftrightarrow \frac{30(h+1)-\alpha}{5.5}-\frac{30 h-\alpha}{5.5} & =\Delta \\
\Leftrightarrow \frac{30 h+30-30 h-\alpha+\alpha}{5.5} & =\Delta \\
\Leftrightarrow \frac{30}{5.5} & =5 . \overline{45}=\Delta
\end{aligned}
$$

$5 . \overline{45}$ minutes equal 5 minutes and $27 . \overline{27}$ seconds, so every $1: 05: 27 . \overline{27}$ hours the hands have the same angle again - independent of the angle!

Note: $1: 05: 27 . \overline{27}$ hours are one eleventh of 12 hours.

## 3 Angle-alteration by $1^{\circ}$

Looking for more applications of the above results I calculated in which timespan $c$ the angle between the hands changes by exactly $1^{\circ}$.
Let $m=\frac{30 h-\alpha}{5.5}$.

$$
\begin{aligned}
\frac{30 h-\alpha+1}{5.5} & =m+c \\
\Leftrightarrow \frac{30 h-\alpha+1}{5.5} & =\frac{30 h-\alpha}{5.5}+c \\
\Leftrightarrow 30 h-\alpha+1 & =30 h-\alpha+5.5 c \\
\Leftrightarrow 1 & =5.5 c \\
\Leftrightarrow c & =\frac{1}{5.5} \min =10 . \overline{90}^{\mathrm{sec}} .
\end{aligned}
$$

## 4 Smiling times

Years after finding these results I learned from a TV quiz-show, that in advertisements for clocks, the clocks always show the time $1: 50$, because the clock
"smiles", which increases the sales figures. Obviously at $1: 50$ the angles of the hands aren't symmetrical, because the long hand has $(360-60)^{\circ}$, but the short hand only has $(60-10 * 0.5)^{\circ}=55^{\circ}$, which caused me to think about the question, at which times the angles of the short hand and the long hand are symmetrical (so $s(h, m)=360-l(h, m)$ ). This is the case, iff

$$
\begin{aligned}
6 m & =360-(30 h+0.5 m) \\
\Leftrightarrow 12 m & =720-60 h-m \\
\Leftrightarrow 13 m & =720-60 h \\
\Leftrightarrow m & =\frac{720-60 h}{13}
\end{aligned}
$$

using this result, we can now explicitly calculate the times, at which the hands are symmetrical:

| h | m | default representation |
| :---: | :---: | :---: |
| 0 | 55.38 | $0: 55: 23.0769$ |
| 1 | 50.76 | $1: 50: 46.1538$ |
| 2 | 46.15 | $2: 46: 09.2307$ |
| 3 | 41.54 | $3: 41: 32.3076$ |
| 4 | 36.92 | $4: 36: 55.3846$ |
| 5 | 32.3 | $5: 32: 18.4615$ |
| 6 | 27.69 | $6: 27: 41.5384$ |
| 7 | 23.08 | $7: 23: 04.6153$ |
| 8 | 18.46 | $8: 18: 27.6923$ |
| 9 | 13.85 | $9: 13: 50.7692$ |
| 10 | 9.23 | $10: 09: 13.8461$ |
| 11 | 4.62 | $11: 04: 36.9230$ |
| 12 | 0 | $12: 00: 00$ |

Note: the difference between one of these times, and the next, is always $55: 23.0769$ minutes, which is a thirteenth of 12 hours.

