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Chapter 1

Introduction

The famous Max-Flow = Min-Cut theorem by Ford and Fulkerson is a
fundamental result for network-theory and shows that the Min-Cut problem
is solvable in polynomial time. Ford and Fulkerson also showed that, when
all capacities are integral, there is a maximum flow that assigns integral
flows to all edges. Ordinary (single-commodity) networks are already very
versatile and can be used to solve many practical problems. multi-commodity
networks have multiple source/drain pairs P = {{s1, t1}, · · · , {sl, tl}}
and the corresponding problems are Max-Multiflow, Max-Integer-
Multiflow and Min-Multicut, which ask for a maximum sum of
(integral) flows between the respective pairs and a minimum set of edges
whose removal disconnects all sources from their respective drains.

Chapter 1 introduces the fundamental terms and techniques that are
used. Chapter 2 introduces several problems for multi-commodity networks.
Chapter 3 will grade Min-Multicut and Min-Multicut on several
special graph classes in terms of classical complexity classes (P, NPC,
APX, MaxSNP, PTAS, FPTAS). Chapter 4 discusses the fixed parameter
tractability and intractability of Min-Multicut in several parameters. The
results are sometimes tangent to the related problems from chapter 2, but
the main focus is on Min-Multicut. The most important open question
is the fixed parameter tractability in the parameter k (the allowed value of
the multicut). Chapter 5 looks at the fixed parameter tractability of Min-
Multicut in the most important parameters, when restricted to special
graph classes. Chapter 6 examines many reduction rules w.r.t. k and possible
generalizations of reduction rules for trees. Chapter 7 takes a look at possible
approaches to developing an algorithm that is FPT in k or a W[1]-hardness
proof and discusses several obstacles that one comes across on the quest
for one of these results (like several plausible interrelations that one might
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8 CHAPTER 1. INTRODUCTION

conjecture, but that are untrue). The bibliography is a treasure chest on its
own, because it contains a huge collection of important works on the topic
and many famous, fundamental works.

Since Min-Multicut is a quite prominent problem, it has already been
analyzed deeply and thus many properties have already been found. So
apparently there aren’t many results left to be found without going beyond
the scope of a degree dissertation. All the more the writer is pleased to report
fixed parameter tractability of Min-Multicut in k on uniform grids (5.6),
which is a new result.
The main goal of this elaboration is to give a broad overview over the topic
and known results. To be a reference work and a starting point for further
development. The focus will be on the basic ideas of the algorithms and
theorems, because to spawn new ideas, it is more important to comprehend
the existing ideas, than to have the full proofs in all detail (which can be
found in the original works after all).
It is convenient to have the core ideas of the most important elaborations
gathered in one location, because when one wades through the individual
elaborations, one has to find them first and then read the same definitions,
backgrounds and references over and over again. Also the notations are
not always consistent (the notations here comply with the majority of
elaborations) and many disquisitions are filled with details and related works,
that steal focus from the core ideas.

1.1 Elementary graph theory

The most general definition of a graph is a 3-tuple G = (V,E, f), containing
a set of vertices V , a set of edges E and a function f : E → P2(V ).
Figuratively speaking, edges constitute connections between vertices and f

defines, which edge connects which vertices. Visual representations of graphs
usually depict a vertex as dot and edges as lines between two of these dots.
If two vertices are connected by an edge, they are adjacent and if an edge
e connects a vertex v to another vertex, then v and e are incident .
Often it is sufficient to define a graph as pair G = (V,E) with E ⊆ P2(V ).
This definition does not formally allow multiple edges to connect the same
pair of vertices, but it is still widely used, even in domains where graphs
with these so called parallel edges can occur. Parallel edges are simply
supposed to be distinguishable somehow because in most domains, a graph
with parallel edges can be replaced by an equivalent1 graph without parallel

1equivalence w.r.t. the respective domain
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edges anyway.

V = {v1, v2, v3, v4, v5, v6}
E = {e1, e2, e3, e4, e5, e6, e7}
f(e1) = {v1, v2} , f(e2) = {v1, v3}
f(e3) = {v3, v4}, f(e4) = {v3, v5}
f(e5) = {v2, v4}, f(e6) = {v4, v6}
f(e7) = {v5, v6}

v1

v2

v3

v4

v5

v6

e1

e2

e3

e4

e5

e6

e7

Figure 1.1: Formal and visual representation of a graph

The edges of a directed graph or digraph have a direction, they are
not represented by a set of vertices, but by an ordered sequence of vertices
called arcs or arrows . A digraph can be represented as a 3-tuple (V,E, f)
again, but here the codomain of f is V ×V instead of P2(V ). Again digraphs
are often defined as pair (V,E) with E ⊆ V × V .
Graphs without parallel edges are called multigraphs and digraphs without
parallel arcs are called multi-digraphs . Note that in the directed case, (x, y)
and (y, x) are not considered parallel.

V = {v1, v2, v3, v4, v5, v6}
E = {e1, e2, e3, e4, e5, e6, e7}
f(e1) = (v1, v2), f(e2) = (v1, v3)
f(e3) = (v3, v4), f(e4) = (v3, v5)
f(e5) = (v2, v4), f(e6) = (v4, v6)
f(e7) = (v5, v6)

v1

v2

v3

v4

v5

v6

e1

e2

e3

e4

e5

e6

e7

Figure 1.2: Formal and visual representation of a directed graph

A weighted (di)graph has an additional weight function ρ : E → R.
Graphs without a weight function can usually be considered to have an
implicit weight function ρ : e 7→ 1 for all e ∈ E.

An ordered sequence of vertices (v1, v2, · · · , vq) is called a (directed) walk
from v1 to vq on a graph, if for all i = 1, · · · , q − 1 an edge {vi, vi+1} ∈ E

or an arc (vi, vi+1) ∈ E exists. If the vertices are all pairwise different, then
the sequence is called a (directed) path . If all vertices are pairwise different,
except v0 = vq, then the sequence is called a (directed) cycle or circle.
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A walk of length 0 (v) is not considered a cycle and a walk of length 2
(v, w, v) is only considered a cycle, if there are parallel edges or opposing
arcs between v and w. A graph is connected , if for all pairs of vertices
v, w there is a path from v to w. A tree is an undirected, connected graph
that contains no cycle. A directed graph that contains no directed cycle is
called a DAG (directed, acyclic graph). Note that the direction plays
a role in the directed case. The digraph in fig. 1.2 is a DAG, although the
“same” graph without directions (fig. 1.1) is not a tree. A tree in which
every edge is incident to one center vertex c is called a star . Formally:
Sn = ({c, x1, x2, · · · , xn}, {{c, xi}|i = 1, · · · , n}).

The neighborhood of a vertex v in an undirected graph is N(v) := {w ∈
V |{v, w} ∈ E}, the set of vertices that are adjacent to v. In directed graphs,
we distinguish the positive neighborhood N+(v) := {w ∈ V |(v, w) ∈ E}
(also called the successors) and the negative neighborhood N−(v) :=
{w ∈ V |(w, v) ∈ E} (also called the predecessors) of a vertex.

The (inbound / outbound) degree of a vertex x on a weighted (di)graph
is defined as

d(v) :=
∑

w∈N(v)

ρ({w, v}) = |N(v)|︸ ︷︷ ︸
In unweighted multigraphs

d+(v) :=
∑

y∈N+(x)

ρ((x, y)) = |N+(v)|︸ ︷︷ ︸
In unweighted multi-digraphs

d−(v) :=
∑

y∈N−(x)

ρ((y, x)) = |N−(v)|︸ ︷︷ ︸
In unweighted multi-digraphs

The minimum and maximum (inbound / outbound) degree of a (di)graph G
are

δ(G) := min{d(x)|x ∈ V } ∆(G) := max{d(x)|x ∈ V }
δ+(G) := min{d+(x)|x ∈ V } ∆+(G) := max{d+(x)|x ∈ V }
δ−(G) := min{d−(x)|x ∈ V } ∆−(G) := max{d−(x)|x ∈ V }

A graph that can be drawn on a 2-dimensional plane such that no edges
overlap, is called a planar graph . The sets of points in the plane, that
are reachable from each other without crossing an edge in a given drawing,
are called countries . The area that surrounds the drawn graph is also
considered a country and is called the outer region . The linegraph [91]
L(G) of a graph G = (V,E) is a graph (V ′, E ′) which has a vertex for
every edge in G (formally this can be expressed as V ′ = E) and two of
these verticess are adjacent in L(G) if the corresponding edges are incident
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in G (formally: E ′ = {{e, e′} ∈ P2(E)|e ∩ e′ 6= ∅}). The linegraph of a
directed graph has an arc (e, e′) if e = (x, y), e′ = (y, z) for some y ∈ V .
If V ′ ⊆ V , then the induced subgraph of V ′ is G[V ′] := (V ′, E ′) with
E ′ = {{u, v} ∈ E|u ∈ V ′, v ∈ V ′} = E ∩ P2(V

′).

1.2 Complexity theory in a nutshell

A (deterministic) Turing machine (DTM), named after Alan Turing
[90], is a 7-tuple (Q,Σ,Γ, δ, q0, , q) containing a set of states Q, an input-
alphabet Σ, a working-alphabet Γ ⊃ Σ, a transition function δ : (Q\{q}) ×
Γ → Q × Γ × {L,R,N}, a start-state q0 ∈ Q, a selected symbol ∈ Γ\Σ
that defines a separator and an end-state q ∈ Q. Turing machines and
computer programs are fundamentally equivalent, but Turing machines are
very formal models, which is why they are well suited for formal analysis of
computability and complexity theory.
A configuration of a Turing machine is a 3-tuple (w, v, q) ∈ Γ∗×Γ∗×Q. The
transition function δ defines a configuration-alteration relation ⊢ as follows

(ε, ε, q0) ⊢ (ε, , q0)
(w, av, q) ⊢ (w, bv, q′) if δ(q, a) = (q′, b, N)
(w, av, q) ⊢ (wb, v, q′) if δ(q, a) = (q′, b, R)
(w, a, q) ⊢ (wb, , q′) if δ(q, a) = (q′, b, R)

(wc, av, q) ⊢ (w, cbv, q′) if δ(q, a) = (q′, b, L)
(ε, av, q) ⊢ (ε, bv, q′) if δ(q, a) = (q′, b, L)

for w, v ∈ Γ∗, a, b, c ∈ Γ, q ∈ Q\{q}, q′ ∈ Q. Using this relation, a Turing
machine M defines a (possibly partial) function fM : Σ∗ → (Γ\{ })∗ by

fM(w) =

{
w′ if (ε, w, q0) ⊢

∗ (v′, w′w′′, q) with w′ ∈ (Γ\{ })∗, w′′ ∈ ( Γ∗)∗

⊥ otherwise

where ⊢∗ is the transitive closure of ⊢ and ⊥ is the symbol for an undefined
result. A Turing machine M computes a function f : Σ∗ → (Γ\{ })∗,
if fM(w) = f(w) for all w ∈ Σ∗. A function f : Σ∗ → (Γ\{ })∗ is
(Turing-) computable if there exists a Turing machine that computes f .
If fM(w) ∈ {0, 1} for all w ∈ Σ∗, then L(M) := {w ∈ Σ∗|fM(w) = 1} is
the language of M and we say M decides L(M). A language L ⊆ Σ∗ is
(Turing-) decidable, if there exists a Turing machine M with L(M) = L.
If fM(w) = ⊥ is also possible, then we say M recognizes L(M), but this
is only defined for completeness; all upcoming languages are decidable.
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The running-time of M on an input w is τ(ε, w, q0) with τ(v, w, q) = 0,
τ(v, w, q) = 1 + τ(v′, w′, q′) for (v, w, q) ⊢ (v′, w′, q′). The worst-case
running-time of M is a function

t : N → N with t(n) = max {τ(ε, w, q0)|w ∈ Σn}.

If there exist f, a, b, n0 such that t(n) ≤ a · f(n) + b for all n ≥ n0, then
we say that f is an upper bound to the running-time or the running-time
of M is in O(f(n)). O is one of the Landau symbols [70]. If there exists
n0 and a polynomial p such that t(n) ≤ p(n) · f(n) for all n ≥ n0, then the
running-time of M is in O∗(f(n)).

A nondeterministic Turing machine (NTM) has a relation

δ ⊆ ((Q\{q}) × Γ) × (Q× Γ × {L,R,N})

instead of the transition function. A configuration (w, v, q) can now have
multiple configurations (w′, v′, q′) with (w, v, q) ⊢ (w′, v′, q′)

(ε, ε, q0) ⊢ (ε, , q0)
(w, av, q) ⊢ (w, bv, q′) if ((q, a), (q′, b, N)) ∈ δ

(w, av, q) ⊢ (wb, v, q′) if ((q, a), (q′, b, R)) ∈ δ

(w, a, q) ⊢ (wb, , q′) if ((q, a), (q′, b, R)) ∈ δ

(wc, av, q) ⊢ (w, cbv, q′) if ((q, a), (q′, b, L)) ∈ δ

(ε, av, q) ⊢ (ε, bv, q′) if ((q, a), (q′, b, L)) ∈ δ

An NTM cannot compute a function, since an end-configuration (v′, w′, q) is
not necessarily unique, so the result might not be well-defined. An NTM can
only decide a language L(M) = {w ∈ Σ∗|fM(w) = 1}, where

fM(w) =





1 if (ε, w, q0) ⊢
∗ (v′, 1w′, q) for some v′ ∈ Γ∗, w′ ∈ ( Γ∗)∗

0 if (v′, w′, q′) ⊢∗ (v′′, 0w′′, q) for all (w′, v′, q′) with
(ε, w, q0) ⊢

∗ (w′, v′, q′)
⊥ otherwise

The running-time of an NTM on an input w is

τ(ε, w, q0) =





τ1(ε, w, q0) if fM(w) = 1
τ0(ε, w, q0) if fM(w) = 0

∞ otherwise

with τ1(v
′, 1w′, q) = τ0(v

′, 0w′, q) = 0, τ1(v
′, 0w′, q) = ∞

• τ1(v
′, w′, q′) = 1 +min {τ1(v

′′, w′′, q′′)|(v′, w′, q′) ⊢ (v′′, w′′, q′′)}
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• τ0(v
′, w′, q′) = 1 +max {τ0(v

′′, w′′, q′′)|(v′, w′, q′) ⊢ (v′′, w′′, q′′)}.

worst case and upper bounds are defined for NTMs like for DTMs.

A problem over an alphabet Σ is a language L ⊆ Σ∗. An instance
of the problem is a word w ∈ Σ∗ and the question is whether w ∈ L. For
example the problem Tree contains all encodings of connected graphs that
contain no cycles. A DTM or NTM M decides a problem L, if L = L(M).
A problem L is polynomial if there is a DTM M that decides L and
that has a running-time in O(p(|w|)) for a polynomial p. A problem L is
nondeterministically polynomial , if there is an NTM M that decides L
and that has a running-time in O(p(|w|)) for a polynomial p.
P is the class of all polynomial problems, NP is the class of all
nondeterministically polynomial problems.

Let L a problem over Σ, L′ a problem over Γ. A P-reduction [20, 59]
is a function g : Σ∗ → Γ∗ that is computable in (deterministic) polynomial
time and that has w ∈ L iff g(w) ∈ L′. If such a function exists, we write
L ≤P L′

Lemma 1.2.1. [59] If L ≤P L′ and L′ ∈ P , then L ∈ P

Proof. Let w′ = g(w). Because of the polynomial running-time of the
reduction, |w′| ≤ p(|w|) for a polynomial p. Since L′ ∈ P , there is
an algorithm with a running-time O(p′(|w′|)) for a polynomial p′. The
overall running-time is O(p(|w|)+ p′(|w′|)) ⊆ O(p(|w|)+ p′(p(|w|))), which is
polynomial in |w|.

Analogous it can be shown that if L ≤P L′ and L′ ∈ NP , then L ∈ NP .

A problem L is NP-hard , if L′ ≤P L for all problems L′ in NP. A
problem is NP-complete or NPC , if it is NP-hard and in NP. Since ≤P is
transitive, it is sufficient to show membership in NP and L′ ≤P L for only
one NP-complete problem L′ to prove NP-completeness of L.
In 1971, Cook [20] proved that the satisfiability problem from propositional
logic SAT is NP-complete. Since then, many more problems followed [59, 46].
An important conclusion [59] from Cooks theorem is that either all NP-
complete problems have a deterministic polynomial algorithm (P=NP), or
none (P6=NP). The question whether P=NP or P6=NP is the most important,
open question of computer science. P6=NP is widely believed and highly
likely, but it is not proven yet.
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1.3 Network theory

A network is a 5-tuple (V,E, s, t, c) containing a set of vertices V , a set of
edges or arcs E, two selected vertices or terminals s (source) and t 6= s

(target , also called drain or sink) and a capacity-function c : E → R+.

s t

5

2
2

2

2
3

1

Figure 1.3: Example of a network

Networks are used to model for example logistic problems, communication
channels or traffic. A vertex might stand for a transfer station, an edge
between two vertices might stand for a traffic link between two cities and
the capacity-function might stand for how many entities of some commodity
can be transported through the traffic links in a given timespan. The source
could stand for a factory, where the entities are produced and the drain could
stand for a retail store, to which entities are delivered.
Many applications of network theory do not require different capacities for the
edges. A network whose edges all have the same capacity (or equivalently:
A network without a capacity-function and implicit capacities of 1 for all
edges) is called a uniform network .

1.3.1 Maximum flows

In directed networks, a network-flow is a function f : E → R+ with

1. f(e) ≤ c(e) for all e ∈ E (capacity-limitation)

2.
∑

y∈N−(x)

f((y, x))

︸ ︷︷ ︸
f−(x)

=
∑

y∈N+(x)

f((x, y))

︸ ︷︷ ︸
f+(x)

for all x ∈ V \{s, t} (flow-

preservation)

3. f((x, s)) = 0, f((t, x)) = 0 for all vertices x ∈ V

An edge with f(e) = c(e) is called a saturated edge. In the example,
a network-flow would stand for the amount of entities that are actually
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transported through the traffic links. The flow-preservation says that entities
are not retained and not produced at transfer stations.
The magnitude of a network-flow f is

∑
x∈N+(s)

f((s, x)) =
∑

x∈N−(t)

f((x, t)).

This quantity equates to the amount of entities that are transported from

s t

1/5

2/2
1/2

1/2

1/2
2/3

1/1

Figure 1.4: A network-flow with magnitude 3

factory s to store t. Naturally the question arises, what magnitude a
network-flow can at most have, or in other words, how many entities can
be transported from s to t in a given timespan. This question encourages
the following definition: a network-flow is a maximum flow or a max-flow ,
if there exists no network-flow that has a larger magnitude.
The flow in fig. 1.4 is not a maximum flow, because obviously it could be
increased by increasing the flow on the lower arcs by 1, to obtain the flow in
fig. 1.5.

s t

2/5

2/2
1/2

1/2

2/2
3/3

1/1

Figure 1.5: A network-flow with magnitude 4

For undirected networks, it makes no sense to map edges to numbers,
because this gives no information about the direction in which the entities
travel through the edge. Instead, flows on undirected networks map ordered
pairs of vertices to numbers f : V × V → R+. This requires some changes in
the conditions.

1. f(x, y) + f(y, x) ≤ c({x, y}) for all {x, y} ∈ E (capacity-limitation)
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2.
∑

y∈N(x)

f(y, x) =
∑

y∈N(x)

f(x, y) for all x ∈ V \{s, t} (flow-

preservation)

3. f(x, s) = 0, f(t, x) = 0 for all vertices x ∈ V

An undirected edge {x, y} is called saturated, if f(x, y) = c({x, y}) or
f(y, x) = c({x, y}).

Many disquisitions define f(x, y) = −f(y, x) for undirected networks.
They define the capacity-limitation as |f(x, y)| + |f(y, x)| ≤ 2 · c({x, y}),
flow-preservation as

∑
y∈N(x)

f(x, y) = 0 and an edge is saturated if |f(x, y)| =

c({x, y}). This definition makes sense for single-commodity networks, but
it makes it unnecessarily complicated to express the capacity-limitation in
linear programs (which are needed for multi-commodity networks).
In the directed case, instead of the third condition, many disquisitions
demand that s has no inbound arcs and t has no outbound arcs, but this
definition already fails for undirected networks and it makes it unnecessarily
complicated to model some circumstances with (directed) multi-commodity
networks.

1.3.2 The Ford-Fulkerson algorithm

Let f a flow on an undirected network (V,E, s, t, c). An augmenting path
is a sequence of vertices (s = x1, x2, · · · , xq = t) such that f(xi, xi+1) −
f(xi+1, xi) < c({x, xi}) for every i = 1, · · · , q − 1. On directed networks,
an augmenting path is a sequence (s = x1, x2, · · · , xq = t) such that for all
i = 1, · · · , q − 1 one of the following holds:

• (xi, xi+1) ∈ E and f((xi, xi+1)) < c((xi, xi+)) (forward arc)

• (xi+1, xi) ∈ E and f((xi+1, xi)) > 0 (backward arc)

If such a path exists (this can be tested in polynomial time, using Dijkstra’s
famous algorithm [29]), then the flow can be augmented by increasing the flow
on the forward arcs and decreasing the flow on the backward arcs. Decreasing
the flow on a backward arc (xi+1, xi) means that the flow coming over that
arc is replaced by the flow coming over the augmenting path. The rest of the
augmenting path defines a rerouting of the excessive flow in xi+1 (which must
be rerouted to reconstitute the flow-preservation in xi+1). This circumstance
is illustrated in fig. 1.6
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a
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c d

e

f
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1/1
1/1

0/1

1/1
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b

c d
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1/1

1/1
0/1

1/1

1/1

Figure 1.6: An augmenting path (· · · , a, c, d, e, · · · ) with a backward arc

Ford and Fulkerson proved [42] that a flow is a maximum flow if and only
if there is no augmenting path. Therefore a maximum flow can be found
using the algorithm by Ford and Fulkerson:

Initialize a flow f , such that f(e) = 0 for all e ∈ E

while ∃ augmenting path P do
increase f along P

done

An interesting conclusion is that there exists a maximum flow that assigns
integral values to all edges, provided all capacities are integral, because in
every iteration, an integral amount is added to the flow on any edge. This
means that Max-Integer-Flow = Max-Flow for such networks, which
is an important property, because it might be impossible to transport entities
partially through one transport link and partially through other transport
links. To determine the max-integer-flow of a network with real capacities,
one must only round all capacities down and determine the max-flow of the
resulting network with integral capacities.

The algorithm by Ford and Fulkerson however is not polynomial, as fig.
1.7 shows.

s

x

y

t

1000

1000

1

1000

1000

Figure 1.7: A network, where the Ford-Fulkerson algorithm might run
exponentially long

In that example, the Ford-Fulkerson algorithm could decide to increase
the initial flow by 1 along s−x−y− t in the first iteration, then increase the
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flow by 1 along s− y − x− t, then along s− x− y − t again and so on. The
algorithm would iterate 2000 times, the running-time would depend linearly
on the capacities, which can be exponential in the input-length. It would
only be polynomial, if the capacities were provided in a unary alphabet (the
algorithm is a so called “pseudo-polynomial” algorithm).

1.3.3 The Edmonds-Karp algorithm

Edmonds and Karp modified the Ford-Fulkerson algorithm [34], so that it
always selects a shortest augmenting path. This trick lowers the running-
time of the algorithm to O(|E|2 · n) ⊆ O(n5). The reason for this is that
in every iteration, at least one edge becomes saturated f(x, y) = c({x, y})
or f((x, y)) = c((x, y)). It might become desaturated again (when it occurs
backwards in an augmenting path), but since shortest augmenting paths are
used, this cannot happen before the distance of x to s is increased, because
otherwise the selected path would not have been a shortest path before.
Since the distance of any vertex to s can be at most n, every edge can at
most become saturated n times, so the algorithm selects at most n · |E|
augmenting paths. Together with a running time of O(|E|) for finding a
shortest augmenting path, the total running-time is in

O( |E|︸︷︷︸
find aug. path

· n︸︷︷︸
at most n times

· |E|︸︷︷︸
per edge

)

Further improvements to the Ford-Fulkerson algorithm have running-times
down to O(n3), where the main idea is to increase the flow on multiple
shortest paths at once [30, 72, 39]. These algorithms become increasingly
complicated, a completely different and much simpler approach is the preflow-
push algorithm, which also has a running-time of O(n3) [61, 50].

1.3.4 Minimum cuts

A cut is a set of edges C ⊆ E such that in (V,E −C) there is no path from
s to t. The value of a cut is

∑
e∈C

c(e).

A cut is a minimum cut or min-cut , if there exists no cut that has a
smaller value. The cut in fig. 1.8 is not a minimum cut, because the cut in
fig 1.9 has a smaller value.

Minimum cuts are of practical interest, e.g. because they are a metric for
the resistance of a supply chain against grid failure. The problem of finding
a minimum cut was solved by the famous Max-Flow = Min-Cut theorem
by Ford and Fulkerson [42]. A minimum cut can be found in polynomial time
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Figure 1.8: A cut with value 6
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Figure 1.9: A cut with value 4

by constructing a max-flow f and selecting S ⊆ V such that S contains all
vertices that are reachable from s using only unsaturated edges. A minimum
cut then is the set of edges that start in S and end in V \S, see fig. 1.10.
Therefore, min-cuts can be found in polynomial time.

s t
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Figure 1.10: A cut with value 4 that has been found using the max-flow

1.3.5 Single-commodity multi-terminal networks

A single-commodity multi-terminal network is a 5-tuple (V,E, S, T, c)
containing a set of vertices V , a set of edges or arcs E, two disjoint sets of
selected vertices S and T (sources and targets) and a capacity-function
c : E → R+. The sources might stand for multiple factories that produce the
same commodity and the drains might stand for multiple retail stores that
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must be supplied.

It makes no difference whether entities of the same commodity are
produced at multiple factories or at a single factory and delivered to the
other “factories” first. So multiple sources can be replaced by a single new
source s that is connected to the old sources with edges of sufficiently large
capacity (e.g. c({s, s′}) =

∑
e∈E

c(e) for all s′ ∈ S). Analogous it makes no

difference whether entities are sold at multiple retail stores or the “retail
stores” forward them to a single store where they are sold. So multiple
drains can be replaced by a single new drain t that is connected to the old
drains with edges of sufficiently large capacity (e.g. c({t′, t}) =

∑
e∈E

c(e) for

all t′ ∈ T ).

This implies that max-flow, max-integer-flow and min-cut of a single-
commodity multi-terminal network (V,E, S, T, c) equate to the max-flow,
max-integer-flow and min-cut of the ordinary network (V

.
∪ {s, t}, E

.
∪

{{s, s′}|s′ ∈ S}
.
∪ {{t′, t}|t′ ∈ T}, s, t, c′) with

c′(e) =

{
c(e) if e ∈ E∑

e∈E

c(e) else

Thus max-flow, max-integer-flow and min-cut of a single-commodity multi-
terminal network can be found in polynomial time.

1.3.6 Productivity and demand

The demand of the stores can be less than the amount that could be produced
and delivered. Also the factories might not be productive enough to produce
the amount that is demanded and could be delivered. Productivity and

drain with demand 3
5

7

2

t
5

7

2

3

Figure 1.11: A drain with less demand than supply

demand can be modeled by splitting the corresponding source or drain into
two vertices and connecting them with an edge or arc, whose capacity is set
to the productivity or demand. One of these vertices becomes the new source
or drain, the other one inherits the neighborhood of the old source or drain.
See fig. 1.11 and 1.12.
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source with productivity 3
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Figure 1.12: A source with less productivity than demand

1.4 Parameterized complexity theory

To solve problems in practice, one needs algorithms with polynomial running-
times, but for NP-complete problems, achieving such an algorithm would
imply P=NP. As mentioned before, it is not yet proven that P6=NP, so the
existence of such an algorithm is not disproven. In theory, a polynomial
algorithm might exist, but unless one is actually found (and thus P=NP is
proven), one must cope with exponential running-times in practice.

Parameterized complexity theory is a relatively young branch of
theoretical computer science, in which one tries to subdivide the instances of
NP-complete problems into “simple” and “hard” instances, so that at least
the “simple” instances can be solved in practice. This is done by looking at
different properties (parameters) and trying to develop algorithms that are
fast for the instances which have a small value for these parameters.

1.4.1 Fixed parameter tractability (FPT)

A problem is fixed parameter tractable [32, 41, 77], if it is solvable by
an algorithm, whose running-time is in O(f(k) · p(|w|)) = O∗(f(k)) for any
instance w, where f is an arbitrary, total function with f(x) < ∞ for all
x and p is a polynomial. k is some property of w, called the parameter .
For example Clique (the problem of finding a maximum set of vertices
that are all pairwise adjacent) can be solved in O(2∆(G) · ∆(G)2 · n) by
examining all subsets of the neighborhood of any vertex. We say that the
problem is fixed parameter tractable or FPT in that parameter. The class of
all fixed parameter tractable problems is called FPT . Informally speaking,
a parameter in which an NP-complete problem is FPT, is a cause of the
exponential running-time, because the problem can be solved fast, except for
instances where the property is large.
Note that fixed parameter tractability is not an inherent property of a
problem. A problem can be FPT in one parameter, but fixed parameter
intractable in a different parameter. For example Clique is FPT in ∆,
but it is fixed parameter intractable in the size of a maximum clique (unless
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FPT=W[1] see 1.4.7 [41, 15]).

If there exists an algorithm with a running-time of O(f(k1, · · · , kq)·p(n)),
then we say that the problem is FPT in {k1, · · · , kq}, although this isn’t
conform to the formal definition of a parameterized problem (see 1.4.2). It
would be formally correct to say that the problem is FPT inmax{k1, · · · , kq}.

Lemma 1.4.1.1. If a problem is FPT in parameters {k1, · · · , kq} and there is
a set of parameters {k′1, · · · , k

′
q′} such that max{ki1 , · · · , kir} ≤ f(k′1, · · · , k

′
q′)

for some function f , then the problem is also FPT in

({k1, · · · , kq}\{ki1, · · · , kir}) ∪ {k′1, · · · , k
′
q′}

Proof. In the running-time of the FPT algorithm, every kij can be replaced
by f(k′1, · · · , k

′
q′).

For example the Vertex Cover problem (the problem of finding a
minimum set of vertices, such that every edge is incident to one of them)
is FPT in the treewidth (see 1.4.5) tw and the treewidth of any graph is at
most as large as the size of a minimum vertex cover β. Therefore Vertex
Cover is also FPT in ({tw}\{tw}) ∪ {β} = {β}.

Lemma 1.4.1.2. If a problem is NP-hard already for constant values of some
parameters {k1, · · · , kq}, then the problem cannot be FPT in these parameters
unless P=NP.

Proof. Fixed parameter tractability would entail an O(f(k1, · · · , kq) · p(n))
algorithm, which is a polynomial running-time for constant values for
k1, · · · , kq, since then f(k1, · · · , kq) is also constant, so O(f(k1, · · · , kq) ·
p(n)) = O(p(n)). This means that the algorithm would be polynomial for
the NP-hard problem and this means P=NP.

An important technique to develop FPT algorithms is using bounded
searchtrees : If an algorithm gets f(k) as argument, calls g(f(k)) recursions,
each of which gets an argument that is at least 1 smaller than the argument
of the parent, a parameter < 0 is not allowed and the running-time within
every recursive call is polynomial p(n), then the overall running time is in
O(g(f(k))f(k) · p(n)).

1.4.2 Parameterized problems

To formalize the concept of the previous section: a parameterized problem
over an alphabet Σ is a (not necessarily decidable) set of pairs of words and
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integers L ⊆ Σ∗×N. An instance of a parameterized problem is a pair (w, k)
with w ∈ Σ∗, k ∈ N and the question is whether (w, k) ∈ L.

For example the problem Clique contains all pairs (w, k), where w is an
encoding of a graph that has a clique of size k. If for every w, there is at most
one k with (w, k) ∈ L, then L can be interpreted as a function Σ∗ → N. A
parameterized problem L is fixed parameter tractable, if there is an algorithm
that decides whether (w, k) ∈ L in a running-time of O(f(k) · p(|w|)).

Clique, as defined above is not FPT, but it was FPT in ∆. To see that
this circumstance can still be described by the above definition, one must keep
in mind that proj1(L)2 itself can already be an encoding of a parameterized
problem, so Clique∆ could be described as L ⊆ (Σ∗ × N) × N. Instances
of this problem would have the form ((w, k), d) and L would contain the
instances ((w, k), d) where w is an encoding of a graph G, d = ∆(G) and G

has a clique of size k.

Any problem L ⊆ Σ∗ can be turned into a parameterized problem Lϕ,
using a function ϕ : Σ∗ → N, by defining

Lϕ := {(w, ϕ(w))|w ∈ L}

A problem L is FPT in a function ϕ, if Lϕ is FPT.

If a problem L is FPT in multiple functions ϕ1, · · · , ϕa (i.e. there are a
algorithms, one is fast for instances w with small values of ϕ1(w), one is fast
for instances · · · and one is fast for instances w with small values of ϕa(w))
then one can decide whether w ∈ L by computing ϕ1(w), ϕ2(w), · · · , ϕa(w)
and using these values to predict the running-times of the algorithms on w.
Using this information the algorithm that is fastest for the concrete instance
w can be selected.
For this method, we would like all these functions ϕi to be computable in
polynomial time (so the running-times can be predicted sufficiently fast),
but this is usually not mandatory. Many FPT-algorithms do not depend on
the knowledge of the parameter. E.g. they can be run multiple times with
successively increased parameter, so the running-time is

O




ϕi(w)∑

j=1

f(i) · p(|w|)


 = O







ϕi(w)∑

j=1

f(i)




︸ ︷︷ ︸
function in ϕi(w)

· p(|w|)︸ ︷︷ ︸
polynomial in |w|




2proj1 is the projection to the first component
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Other algorithms do not use the parameter. E.g. the parameter of the
O(2∆ · ∆2 · n) algorithm for Clique is only needed to describe the running-
time, but it is not used within the algorithm.

Multiple of such algorithms can be run in parallel and aborted as soon as
one of them terminates. The running-time of this method is

O(a · t · o)

where a is the number of algorithms that are executed in parallel (usually
constant, but it is sufficient that a ≤ p(|w|) for a polynomial p), t is the
running-time of the algorithm that is fastest for the given instance w and o

is the overhead from context-switching (constant on random access machines
like computers and ≤ a · t on (one-tape) Turing machines). So although the
parameters can be unknown, the overall running-time stays FPT

O((p(|w|)︸ ︷︷ ︸
a

· f(ϕi(w)) · pi(|w|)︸ ︷︷ ︸
t

) 2
︸︷︷︸

o

) = O( f(ϕi(w))2

︸ ︷︷ ︸
function in ϕi(w)

· p(|w|)2 · pi(|w|)
2

︸ ︷︷ ︸
polynomial in |w|

)

1.4.3 FPT-reductions

Let L a parameterized problem over Σ and L′ a parameterized problem
over Γ. Analogous to P-reductions, an FPT-reduction is a function
g : (Σ∗ × N) → (Γ∗ × N) that is computable in FPT time and that has

1. (w, k) ∈ L iff (w′, k′) ∈ L′

2. k′ ≤ f(k) for a function f

for g((w, k)) = (w′, k′). If such a function exists, we write L ≤FPT L′.

Lemma 1.4.3.1. If L ≤FPT L′ and L′ is FPT, then L is FPT. (in other
words: FPT is closed under FPT-reductions)

Proof. To solve an instance (w, k) of L, one can compute g((w, k)) and run
the FPT algorithm for L′ on the result (w′, k′). This method has an FPT
running-time:
(w′, k′) can be computed in O(f1(k) · p1(|w|)), so |w′| ≤ f1(k) · p1(|w|) + |w|.
So the running-time of the FPT algorithm for L′ will be

O(f2(k
′) · p2(|w

′|))

⊆ O(f2(f(k)) · p2(f1(k) · p1(|w|) + |w|))

⊆ O(f2(f(k)) · (f1(k) · p1(|w|))
d+1) if d is the degree of p2

= O(f2(f(k)) · f1(k)
d+1

︸ ︷︷ ︸
function in k

· p1(|w|)
d+1

︸ ︷︷ ︸
polynomial

)
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Together with the running-time for the reduction, the overall running-time
is in

O(f1(k) · p1(|w|) + f2(f(k)) · f1(k)
d+1 · p1(|w|)

d+1)

⊆ O(2 ·max {f1(k) · p1(|w|), f2(f(k)) · f1(k)
d+1 · p1(|w|)

d+1})

= O(max {f1(k) · p1(|w|), f2(f(k)) · f1(k)
d+1 · p1(|w|)

d+1})

= O(f1(k) · p1(|w|))︸ ︷︷ ︸
FPT

or O(f2(f(k)) · f1(k)
d+1 · p1(|w|)

d+1)︸ ︷︷ ︸
FPT

which is an FPT running-time.

Many disquisitions show fixed parameter intractability of a parameterized
problem by giving an FPT-reduction from a fixed parameter intractable
problem to it.

1.4.4 Kernelizations

A kernelization is a function g : Σ∗ × N → Σ∗ × N that is computable in
polynomial time and that has

• (w, k) ∈ L iff (w′, k′) ∈ L

• |w′| ≤ f(k) for a function f

for g((w, k)) = (w′, k′). We call (w′, k′) the (problem-)kernel of (w, k).
Informally speaking, a kernelization is a polynomial algorithm that can solve
“simple” sub-problems of an instance. The kernel is the part of the instance
that the kernelization cannot solve, it is the “hard” part of the instance.

Lemma 1.4.4.1. [77] A parameterized problem is fixed parameter tractable
if and only if it is decidable and has a kernelization.

Proof. Let L a decidable, parameterized problem with a kernelization g. Let
(w, k) an instance of the problem and (w′, k′) = g((w, k)) with |w′| ≤ f(k).

Since the problem is decidable, there is an algorithm with some upper
bound O(h(|w|)) to the running-time for any instance w. w′ can be computed
in polynomial time O(p(|w|)). Thereafter the decision algorithm can be
applied in finite time O(h(|w′|)) ⊆ O(h(f(k))). The total running-time is
O(p(|w|) + h(f(k))), which satisfies the definition of an FPT algorithm.

Let L a parameterized problem that is fixed parameter tractable i.e. there
is an algorithm that decides the problem in O(f(k) · p(|w|)). A kernelization
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can be obtained that has the f from the running-time as limit for the kernel
sizes. Instances (w, k) with |w| ≤ f(k) will be mapped to themselves, as their
size is small enough. For instances (w, k) with f(k) < |w|, the running-time
of the FPT algorithm becomes polynomial, because f(k)·p(|w|) ≤ |w|·p(|w|),
which is polynomial. Therefore these instances can be solved in polynomial
time, using the FPT algorithm and mapping them to a trivial instance
wyes ∈ L if the algorithm says (w, k) ∈ L or to wno 6∈ L if the algorithm
says (w, k) 6∈ L.
The size of the kernel of (w, k) is bounded by max{f(k), |wyes|, |wno|}.

Many disquisitions show fixed parameter tractability of a parameterized
problem by defining a kernelization and proving an upper bound of f(k) for
|w′|.

If there exists a polynomial p such that |w′| ≤ p(k) for all (w, k), then
the problem is in the important complexityclass POLYKERNEL.

1.4.5 Treewidth

Informally speaking, the treewidth tw of a graph is a measurement for
its similarity to a tree. This property seems inconspicuous, but over the
last decades, it has proven to be one of the most important properties of
a graph, at least from the viewpoint of computational complexity, because
most graph-theoretic problems are FPT in the treewidth (see 1.4.6).

The formal definition as it is used nowadays goes back to Robertson and
Seymour [81, 82, 83], although many equivalent definitions were known before
[11]. Formally, the treewidth of a graph G is the smallest possible size of a
tree-decomposition , where a tree-decomposition is a pair (T,B) containing
a tree T and a mapping B : V (T ) → P(V (G)). The sets of vertices from G,
that are associated to the vertices of the tree are called bags . If e = {x, y}
is an edge in G and there is a vertex v in T with x, y ∈ B(v) (there is a bag
that contains both x and y), then the edge is cleared . A tree-decomposition
must fulfill

1.
⋃

v∈V (T )

B(v) = V (G) (every vertex is in a bag)

2. ∀{x, y} ∈ E(G).∃v ∈ V (T ).{x, y} ⊆ B(v) (every edge is cleared)

3. if x ∈ B(v1) ∩ B(v2), then x ∈ B(vi) for all vi on the (unique) path
from v1 to v2 in T . (in other words: for every vertex v from G, the
bags that contain v induce a subtree)
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The size of a tree-decomposition (T,B) is one less than the cardinality of
its largest bag max

v∈V (T )
|B(v)| − 1. The pathwidth is defined just like the

treewidth, only that for the pathwidth, T must be a path.

An interesting interrelation is that the treewidth+1 coincides with the
number of policemen that are needed to catch a (fast) fugitive in a graph
[87], if the policemen always know, where he is. If they don’t know this, then
the number of needed policemen coincides with the pathwidth+1 [63, 35].
The strategy to catch the fugitive is to place the policemen on the vertices
of one bag and move them successively to the vertices of an adjacent bag
(depending on where the fugitive is). This strategy forces the fugitive more
and more into a dead end (a leaf of the tree-decomposition).

In linear time, a tree-decomposition can be turned into a nice tree-
decomposition without changing its width (Lemma 13.1.3 in [66]). In a
nice tree-decomposition, T is a rooted tree such that

• every vertex of T has at most 2 children

• if a vertex x has 2 children y, z, then B(x) = B(y) = B(z) (such a
vertex x is called a join vertex )

• a vertex x with 1 child y has either

– B(x) = B(y)
.
∪ {v} (such a vertex x is called an introduce

vertex ) or

– B(x)
.
∪ {v} = B(y) (such a vertex x is called a forget vertex )

In terms of the cops and fugitive game, a nice tree-decomposition corresponds
to a strategy in which the policemen are moved one after the other and the
decision in which direction to move can be split up into multiple decisions
between pausing and then moving in one direction or pausing and then
deciding between the other directions. Many FPT algorithms use dynamic-
programming on a (nice) tree-decomposition. For this, it is important that
for any graph G = (V,E), there exists a nice tree-decomposition (T,B) with
at most 4 · |V | vertices in T (Lemma 13.1.3 in [66]).

1.4.6 Courcelle’s theorem

Courcelle’s theorem [24] is one of the most important theorems in
parameterized complexity theory. It says that every graph-theoretic problem



28 CHAPTER 1. INTRODUCTION

that can be axiomatized in monadic second order (MSO2) logic3, is fixed
parameter tractable in the treewidth. In [3], this result was generalized to
extended MSO2 (ExtMSO2) logic.
ExtMSO2 thereby contains formulas that are constructed inductively from

Atomic statements, membership and equality adj(x, y), inc(x, e) to
express adjacency of two vertices x, y or incidence of a vertex x to an
edge e. Also quantified variables can be tested for equivalence x = y

and membership in a set x ∈ U .

Propositional logic operators ∨, ∧, ¬ to express disjunction,
conjunction and negation of statements.

First order logic (FOL) quantifiers ∃x ∈ X.ϕ(x), ∀x ∈ X.ϕ(x) to
express that a statement ϕ holds for at least one (∃) or all (∀) elements
x of a set X.

Monadic second order (MSO) quantifiers ∃X ⊆ Y.ϕ(X), ∀X ⊆
Y.ϕ(X), to express that a statement ϕ holds for at least one or all
subsets X of a set Y .

Extensions to MSO max X ⊆ Y.ϕ(X), min X ⊆ Y.ϕ(X) to quantify a
maximum or minimum set, for which a statement ϕ holds.

The validity of Courcelle’s theorem in logics with arithmetic extensions is
subject matter of current research. Examples for ExtMSO2 formulas for
common graph-theoretic problems are

Clique max U ⊆ V.∀u ∈ U.∀v ∈ U.u = v ∨ adj(u, v)
Dominating Set min U ⊆ V.∀v ∈ V.v ∈ U ∨ ∃u ∈ U.adj(u, v)
Vertex Cover min U ⊆ V.∀e ∈ E.∃v ∈ U.inc(v, e)

Courcelle’s theorem is usually proven by constructing tree-automata for
the ExtMSO2 formulas and applying them to tree-decompositions, whose
computation is FPT in tw [10].

Lemma 1.4.6.1. Let L a (parameterized) graph-theoretic problem. If for all
instances (w, k) of the problem (w is an encoding of a graph G), an ExtMSO2

formula ϕG can be constructed in O(f(k1, · · · , kq) ·p(n)) such that (w, k) ∈ L
iff G models ϕG, and whose length is bounded by g(k1, · · · , kq) for some f, g
and parameters k1, · · · , kq, then the problem is fixed parameter tractable in
{tw, k1, · · · , kq} (k might be among the parameters k1, · · · , kq).

3The 2 in the index of ExtMSO refers to two-sorts, because the universe of the logical
structure of a graph contains two sorts of elements: vertices and edges
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Proof. To decide whether (w, k) ∈ L, the formula ϕG can be constructed in
O(f(k1, · · · , kq)·p(|w|)). Thereafter the automaton for ϕG can be constructed
in a running-time that depends only on the length of the formula, so this step
takes O(h(g(k1, · · · , kq))) steps for some h. Finally, the tree-decomposition
of G can be obtained and checked by the automaton in O(f̃(tw)). The total
running-time is

O(f(k1, · · · , kq) · p(n) + h(g(k1, · · · , kq)) + f̃(tw))

Example: The question whether a graph G has a path of length k is FPT
in {tw, k}, because an ExtMSO2 formula with a size bounded by O(k2) would
be

∃x1, · · · , xk ∈ V.x1 6= x2 ∧x1 6= x3 ∧ · · ·∧xk−1 6= xk

∧adj(x1, x2) ∧ adj(x2, x3) ∧ · · · ∧ adj(xk−1, xk).

These results are very important, but they are only of theoretical interest.
In practice, algorithms still have to be designed manually, since the automata
are far too large to be used in practice. There exist short MSO2 formulas,
that correspond to automata with e.g. 265536 ≈ 1019728 states. In fact, the
size of the automata is not bounded by any elementary function [45].

1.4.7 The weft-hierarchy

A parameterized problem L is in the complexity class W[i] , if for every
instance (w, k), a boolean circuit with multiple inputs and a single output
can be constructed within FPT time, with the following properties:

• (w, k) ∈ L if and only if the circuit has a satisfying assignment that
assigns true to exactly k inputs

• Every path from an input to the output contains at most c gates with
fan-in ≤ 2 (small gates), where c is a constant for all instances

• Every path from an input to the output contains at most i gates with
unbounded fan-in (big gates)

A boolean circuit whose maximum number of big gates on a path from an
input to the output is i, has weft i [31]. Analogous to NP-hardness and NP-
completeness, [41] a parameterized problem L ⊆ Σ∗ × N is W[i]-hard , if
every parameterized problem L′ ∈W [i] has L′ ≤FPT L and W[i]-complete,
if it is W[i]-hard and in W[i].
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FPT = W [0] ⊆ W [1] ⊆W [2] ⊆ · · · ⊆ W [∗] :=
⋃

i∈N

W [i]

Note that FPT=W[0], because within FPT time the instances of
parameterized problems in FPT can be solved entirely and mapped to trivial
circuits (without big gates), so FPT ⊆ W [0]. Conversely: if all instances of
a parameterized problem can be mapped in time O(f(k) · p(n)) to a weft 0
circuit (which has at most 2c inputs and can thus be solved in constant 22c

steps), then all instances can be solved in O(f(k) · p(n) + 22c

), which is an
FPT running-time, so W [0] ⊆ FPT .

It is widely believed that W [i] 6= W [j] for all i 6= j and although this
is not proven yet, a proof for W[i]-hardness of a problem L is considered a
proof for L 6∈ W [j] for any j < i. In particular, showing W[1]-hardness of a
parameterized problem is considered proof for fixed parameter intractability.



Chapter 2

Multi-commodity networks

A multi-commodity network is a 4-tuple (V,E,P, c) containing a set
of vertices V , a set of edges or arcs E, a set of pairs of selected vertices
P = {(s1, t1), · · · , (sl, tl)} ⊆ V × V or P = {{s1, t1}, · · · , {sl, tl}} ⊆ P2(V )
and a capacity-function c : E → R+. A multi-commodity network whose
edges all have the same capacity (or equivalently: A multi-commodity
network without a capacity-function and implicit capacities of 1 for all edges)
is called a uniform multi-commodity network . Usually it is assumed
that c(e) ≥ 1 for all edges e, so that the height of a searchtree can be bounded
by k.

2.1 The Max-Multiflow problem

Let (V,E,P, c) an undirected multi-commodity network. A multiflow is a
function f : V × V × {1, · · · , l} → R+ with

1.
l∑

i=1

f(x, y, i) + f(y, x, i) ≤ c({x, y}) for all {x, y} ∈ E (capacity-

limitation)

2.
∑

y∈N(x)

f(y, x, i) =
∑

y∈N(x)

f(x, y, i) for all i = 1, · · · , l and all x ∈

V \{si, ti} (individual flow-preservation)

3. f(x, si, i) = 0, f(ti, x, i) = 0 for all i = 1, · · · , l and all vertices x ∈ V

For directed multi-commodity networks (V,E,P, c), a multiflow is a
function f : E × {1, · · · , l} → R+ with

1.
l∑

i=1

f(e, i) ≤ c(e) for all e ∈ E (capacity-limitation)

31
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2.
∑

y∈N−(x)

f((y, x), i) =
∑

y∈N+(x)

f((x, y), i) for all i = 1, · · · , l and all

x ∈ V \{si, ti} (individual flow-preservation)

3. f((x, si), i) = 0, f((ti, x), i) = 0 for all i = 1, · · · , l and all vertices
x ∈ V

The crucial difference to single-commodity multi-terminal flows is that it
is not sufficient to require that the magnitude of the inbound flow equals the
magnitude of the outbound flow for every vertex, but it must be required
that the inbound flow of every individual commodity equals the outbound
flow of the same commodity for all commodities in all vertices. This is why
an augmenting path does not necessarily exist for non-optimal multiflows.
An augmenting path for one commodity cannot simply replace the flow of
a different commodity and decrease the flow on a backward arc, because
this would violate the flow-preservation of the involved commodities in the
involved vertices (compare fig. 1.6 and fig. 2.1).

s1

s2

t1

t2

(0,1)/1

(0,0)/1

(0,0)/1 (0,0)/1 (0,0)/1 (0,0)/1

(0,1)/1

(0,1)/1

(0,0)/1

(0,1)/1 (0,1)/1

⇓

s1

s2

t1

t2

(0,1)/1

(1,0)/1

(1,0)/1 (1,0)/1 (1,0)/1 (1,0)/1

(0,1)/1

(0,1)/1

(1,0)/1

(0,0)/1 (0,0)/1

Figure 2.1: A non-maximum multiflow and a multiflow with violated flow-
preservation after using a normal augmenting path

2.1.1 Linear programs

Despite this obstacle, Max Multiflow is still polynomial, because its
instances can be modeled as linear programs [43] and solving linear programs
is polynomial [58, 76]. Itai showed [57] that Linear Programming ≤P
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Max Multiflow. For every pair of an undirected edge {x, y} and a
commodity i, two variables Xx,y,i and Xy,x,i are used which describe how
many entities of commodity i travel through the edge in either direction. For
directed arcs (x, y), only one variable Xx,y,i is needed per commodity, since
the entities can only travel in one direction through these arcs.

The capacity-limitation can be described as (canonical) linear constraints:

l∑

i=1

Xx,y,i +Xy,x,i ≤ c({x, y}) for all edges {x, y} ∈ E

l∑

i=1

Xx,y,i ≤ c((x, y)) for all arcs (x, y) ∈ E

Also the flow-preservation can be described as (canonical) linear constraints:

∑

y∈N(x)

Xy,x,i −
∑

y∈N(x)

Xx,y,i ≤ 0

−
∑

y∈N(x)

Xy,x,i +
∑

y∈N(x)

Xx,y,i ≤ 0

for all i = 1, · · · , l and all vertices x ∈ V \{si, ti}.

∑
y∈N(si)

Xy,si,i ≤ 0
∑

y∈N(ti)

Xti,y,i ≤ 0

−
∑

y∈N(si)

Xy,si,i ≤ 0 −
∑

y∈N(ti)

Xti,y,i ≤ 0

for all i = 1, · · · , l.

The objective function is to maximize the sum of the outbound flows of
commodity i from si.

Example: Consider the multi-commodity network in fig. 2.2.

a = s2

b

c = s1

d = t2

e = t1

2
2

3

1
2

Figure 2.2: A multi-commodity network
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Objective function: maximize Xc,b,1 +Xc,d,1 +Xa,b,2 under the condition



1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0
1 0 −1 0 1 0 0 0 0 0

−1 0 1 0 −1 0 0 0 0 0
0 1 0 −1 0 1 0 0 0 0
0 −1 0 1 0 −1 0 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 −1 0 −1 0 0
0 0 1 0 0 0 1 0 −1 0
0 0 −1 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 −1




·




Xa,b,1

Xa,b,2

Xb,d,1

Xb,d,2

Xc,b,1

Xc,b,2

Xc,d,1

Xc,d,2

Xd,e,1

Xd,e,2




≤




2
3
2
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0




Figure 2.3: A linear program for the multi-commodity network in fig. 2.2

A linear program for this instance is shown in fig. 2.3.

The first 5 lines of the matrix model the capacity-limitation, followed by
2,4,2,4 and 2 lines, modeling the flow-preservation of vertex a, b, c, d and e

respectively.

Using an LP-solver (which uses the simplex algorithm [27]), gives the
result

Value of objective

function: 4.0

x1 = 0.0 x2 = 2.0

x3 = 1.0 x4 = 2.0

x5 = 1.0 x6 = 0.0

x7 = 1.0 x8 = 0.0

x9 = 2.0 x10 = 0.0

a = s2

b

c = s1

d = t2

e = t1

(0,2)

(1,0)

(1,2)

(1,0)

(2,0)
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2.1.2 Revenue, transportation costs and minimal

requirements

Using linear programs, it is even possible to incorporate different prices of the
commodities, by using the prices as coefficients πi to the outbound flows of
commodity i in the objective function. This causes the solution to preempt
flow of entities that generate more revenue.

Also different prices for using different edges can be modeled and it is
even possible to model different prices for transporting entities of different
commodities over the same edge (for example it is surely cheaper to transport
cars on a train, than transporting toxic waste on the same train). This can
be done by subtracting the loss from the objective function. The loss is the
product of the price τx,y,i for transporting entities of commodity i from x to
y and the amount of entities that are actually transported Xx,y,i. This will
cause the solution to preempt cheaper routes.

New objective function: maximize

l∑

i=1




πi ·
∑

(si,z)∈E

Xsi,z,i

︸ ︷︷ ︸
revenue from commodity i

−
∑

(x,y)∈E

τx,y,i ·Xx,y,i

︸ ︷︷ ︸
transport costs for commodity i




If store ti needs at least di units of commodity i, then this can be expressed
as an additional constraint in the linear program:

∑

x∈N−(ti)

−1 ·Xx,ti,i ≤ −1 · di

2.2 The Max-Integer-Multiflow problem

The Max-Multiflow and Max-Integer-Multiflow problem, like
the Max-Flow and Max-Integer-Flow problems, only differ in the
codomain of the flow-function, which is R+ for Max-Multiflow, but N0

for Max-Integer-Multiflow.

Unfortunately, the Max-Integer-Flow = Max-Flow theorem from
single-commodity networks with integral capacities does not hold for multi-
commodity networks, as figure 2.6 shows. In fact, determining the magnitude
of a maximum integer multiflow is NP-complete. There are several interesting
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proofs for the NP-completeness of Max-Integer-Multiflow on instances
with l = 2, one can be found in [38]. The first proof for the NP-completeness
(without limitation on l) was invented by Donald E. Knuth in a private
conversation with Richard M. Karp in 1974, who published the proof in 1975
[60]. It is also NP-complete on grids [68].

On uniform stars, Max-Integer-Multiflow is equivalent [49] to
the (polynomial [33]) Maximum Matching problem, using the same
construction as in the reduction from Min-Multicut on stars to Vertex
Cover (see 5.1): construct an auxiliary graph with the same set of vertices
as the star, except for the center vertex, and add an edge {x, y}, if {x, y} ∈ P.
Having flow between x and y corresponds to selecting the edge {x, y} for a
matching (because of uniformity and integrality, every vertex can only have
flow to one other terminal, like in a matching, every vertex can only be
covered by at most one edge). If there is a terminalpair {c, xi}, where c is
the center vertex and xi is some other vertex, then the flow between these
vertices can be used without any loss - remove xi and add 1 to the result.
On undirected, uniform trees, the max-integer-multiflow equates to the
number of edge-disjoint paths: The path that is used by one flow must be
edge-disjoint to all paths that are used by other flows. Conversely, every path
in a set of disjoint paths allows an integer-flow of 1. Computing the number
of disjoint paths is NP-complete in general [2], but polynomial on trees [49].

The algorithm to find a maximum-integer-multiflow in a uniform tree
T uses dynamic programming: Select an arbitrary vertex r as root. Now
select a height-1 subtree T ′ (a last vertex t with children on a longest path
downwards and its children x1, · · · , xq). As mentioned above, the maximum-
integer-multiflow between the leaves of T ′ can be found by using a matching
algorithm, where an edge {xi, xj} is member of the matching iff there is flow
(of size 1) from xi to xj .
This disregards flows, which might go through the edge between t and its
parent t′. Using a flow that starts at xi and goes through {t, t′}, can only
pay off if the flow from xi is not necessarily needed within T ′. This is the
case if there is a maximum matching in the auxiliary graph, which does not
cover xi. This can be tested in polynomial time e.g. by computing the size
of a maximum matching for the auxiliary graph of T ′ − xi. If it is less than
the size of a maximum matching for the auxiliary graph of T ′, then using a
flow from xi through {t, t′} cannot pay off.
Let X the set of vertices in T ′, whose usage can pay off. If there is a
terminalpair {t, t′′} with t′′ 6= xi for i = 1, · · · , q, then also include t in
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X, since in this case, a flow over {t, t′} can also come from t. Let X̃ the set
of si and ti labels that are attached to vertices in X. Delete T ′ from T and
attach a new vertex τ to t′ and give all labels in X̃ to τ . A maximum-integer-
multiflow on the resulting (smaller) tree determines which vertex from X to
use (if any) by having a flow between some sj and tj , where one of them is
a label of τ .

Consider the example in fig. 2.4: The max-integer-multiflow on the right

s3

s1 t1, t2 s2, t3 → s1, s2, t3 s3

Figure 2.4:

tree is between s3 and t3. Therefore in T ′, the flow over {t, t′} will come from
the vertex labeled t3 and within T ′, the flow will be used which prevails if t3
is deleted.

s3

s1 t1, t2 s2, t3 →

s3

s1 t1, t2 s2, t3

Figure 2.5:

On trees, Max-Integer-Multiflow becomes NP-complete already if
c(e) ∈ {1, 2} [49]. Garg, Vazirani and Yannakakis use many arguments
for relationships between integer-multiflow problems on trees and matching
problems. c(e) ∈ {1, 2} is the point, where Max-Integer-Multiflow
becomes equivalent to Three-Dimensional Matching, which is a well
known NP-complete problem [59, 46].

Since every integral multiflow is a multiflow, we have

max-integer-multif low ≤ max-multif low
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2.3 The Min-Multicut problem

A multicut is a set of edges C ⊆ E such that in (V,E−C) there is no path
from an si to its corresponding ti. The value of a multicut is

∑
e∈C

c(e).

A multicut is a minimum multicut or a min-multicut , if there exists no
multicut that has a smaller value.

The Max-Flow=Min-Cut theorem from single-commodity networks
does not hold for multi-commodity networks, as figure 2.6 shows. But we
have

max-multif low ≤ min-multicut

because if a multicut C is removed from E, then there cannot be any flow
left and successively putting e ∈ C back into the network can increase the
multiflow by at most c(e) for every e ∈ C, so after putting all edges/arcs
from C back in, there cannot be more flow than

∑
e∈C

c(e) = value(C) for any

multicut C, in particular for a min-multicut.

s1, t3 s2, t1

t3, s2

s1

s2

t1

t2

Figure 2.6: An undirected and a directed [57] uniform multi-commodity
network with max-integer-multiflow = 1, max-multiflow = 1.5, min-multicut
= 2

It is easy to see that Min-Multicut on undirected networks ≤P Min-
Multicut on directed networks: simply replace every undirected edge {x, y}
with the gadget graph [48] in fig. 2.7. Obviously paths and cuts in the

x

e1

e2

y

Figure 2.7:
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undirected graph correspond to paths and cuts, that use the (e1, e2) arcs in
the directed graph. From a multicut C for the undirected graph, a multicut
for the directed graph can be obtained by cutting the (e1, e2) arcs from the
gadget graphs that correspond to the edges in C. Conversely, if there is a
multicut C for the directed graph, then there is a multicut C ′, that uses only
the (e1, e2)-arcs. A multicut C ′ for the undirected graph contains all edges,
whose (e1, e2) is in C. This reduction retains the size of the solution, so this
is an FPT-reduction.

The dual problem [27] of the linear program for a Max-Multiflow
instance is a linear program for a relaxed version of Min-Multicut [47].

2.4 The Multiway-Cut and Multiway-Flow

problems

Let (V,E, T, c) a 4-tuple containing a set of vertices V , a set of edges E,
a set of terminals T ⊆ V (|T | =: l) and a capacity-function c : E → R+.
The Multiway-Cut problem (also called Multiterminal-Cut) asks for
a subset C ⊆ E with a minimum

∑
e∈C

c(e), such that in (V,E − C) there

is no path from any s ∈ T to any t 6= s ∈ T . Clearly Multiway-
Cut instances are a special case of Min-Multicut, as an equivalent
instance of Min-Multicut can easily be constructed: (V,E,P, c) with
P = {(s, t)|s ∈ T, t ∈ T\{s}}. (note: |P| =

(
|T |
2

)
).

Multiway-Cut is

• Polynomial on trees, using dynamic programming [19, 22]

• Polynomial on uniform DAGs [23] (see below)

• NP-complete and MaxSNP-hard on undirected uniform networks with
l = 3 [26] (see 3.3.1)

• NP-complete and MaxSNP-hard on directed uniform networks with
l = 2 [48] (see 3.3.2) (this seems like it was equivalent to Min-Cut
and hence polynomial so P=NP, but here all paths s1 − s2 and all
paths s2 − s1 have to be cut)

• NP-complete on uniform planar graphs with ∆ = 3 and unbounded l

[26]
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• Not NP-complete on uniform planar graphs for bounded values of l
(here it is solvable in O((4l)ln2l−1 log(n)) [26]), but because of the l in
the exponent of n, this algorithm is not an FPT algorithm

• FPT in k [73] (see 4.2)

On (non-uniform) DAGs, splitting every x ∈ T up into two terminals
xs, xt, such that xt inherits the negative neighborhood of x and xs inherits
the positive neighborhood of x, turns Multiway-Cut instances into single-
commodity cut instances (and thus Multiway-Cut is polynomial on DAGs
[23]) because all xs have to be disconnected from all xt, just like in
single-commodity cut problems. Thereby it is crucial that the graph is
acyclic, because otherwise a single-commodity cut would also include arcs to
disconnect xs from xt, which is unnecessary in Multiway-Cut. So actually
Multiway-Cut is polynomial on digraphs, if no terminal is on a cycle.

The Multiway-Flow problem (also called Multiterminal-Flow)
asks for a function f : V × V × T → R+, subjected to capacity-limitation
and flow-preservation, such that f(x, t, t) = 0 for all t ∈ T and f(x, t2, t1) >
f(t2, y, t1) is allowed for t1, t2 ∈ T . This means that flow from one terminal
can go to any other terminal, but not back to its origin.
A maximum multiway-flow will never route a flow “through” a terminal
s1 → s2 → s3, because such a flow can be increased by splitting the flow
up into two flows s1 → s2 and s2 → s3. This is why on directed networks,
the terminals can be split like in the method for Multiway-Cut on DAGs,
which turns the problem on DAGs into single-commodity flow problems [23].
Thereby it is crucial that the graph is acyclic, because otherwise flow from
xs to xt would be possible, which is forbidden in Multiway-Flow. Again,
the argument also works for digraphs in which no terminal is on a cycle.

2.5 V-Cut problems

Min-Multicut and Multiway-Cut are the natural generalizations to the
classic problems of single-commodity networks, which is why these problems
get much attention. There are however several more problems on multi-
commodity networks. Min V-Cut and Min Multiway-V-Cut ask for a
minimum set of vertices whose removal separates a given set of terminalpairs
or all terminals within a set of terminals. Both of these problems have
a restricted and an unrestricted version, where the unrestricted version
allows deletion of terminals, which the restricted version does not allow.



2.5. V-CUT PROBLEMS 41

Obviously Unrestricted V-Cut ≤FPT Restricted V-Cut, since
every terminal t can be split into t1, t2 such that t1 becomes the new terminal,
t2 inherits the neighborhood of t and an edge (or arcs in both directions)
with sufficiently large capacity (or multiple parallel length-2 paths to retain
uniformity and multigraph property) is added between t1 and t2. Deleting t in
the unrestricted version now corresponds to deleting t2 while it is forbidden
to delete the terminal t1. The edge-cut versions can easily be (P-, FPT-)
reduced to unrestricted V-Cut versions, by operating on the linegraphs of
the networks.

Unrestricted V-Cut is

• Polynomial on uniform trees by always deleting the least common
ancestor (LCA) as described in 5.3 [14].

• NP-complete on graphs of treewidth 2, because the linegraphs of trees
with ∆ = 3 have treewidth 2 and Min-Multicut is NP-complete on
trees with ∆ = 3 (see 3.3.4)

• NP-complete on cacti (note: caci have treewidth 2), using the method
presented in 3.3.5 [7]. See also [14]

• NP-complete on interval graphs [52]

• Fixed parameter intractable in tw [14]

• Fixed parameter tractable in l [73]

Restricted V-Cut is

• Polynomial on interval graphs [52]

• NP-complete on trees [14]

• NP-complete on trees with ∆ = 3 and pw = 2 [52]

• FPT in k on uniform trees, by an algorithm that is very similar to the
FPT algorithm for Min-Multicut on uniform trees (5.3). Here, the
LCA is not always deletable, since it might also be a terminal. In this
case, the first deletable vertex on the paths from LCA to si or ti can be
deleted, which yields a searchtree of height k and a branching-factor of
at most 2 [52]

• Fixed parameter intractable in tw [14]

• Fixed parameter intractable in l [52]
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• Fixed parameter tractable in {l, tw} [52]

Restricted, directed V-Cut and Unrestricted, directed V-
Cut can be (P-, FPT-)reduced to directed Min-Multicut, by splitting
every vertex x into x+ and x− such that x+ inherits the positive neighborhood
of x and x− inherits the negative neighborhood. Turn every old arc into k+1
parallel length-2 paths and add the arc (x−, x+) for all x ∈ V .
Deleting (x−, x+) now corresponds to deleting x, as this destroys all paths
through x and deleting the old arcs has become impossible, so only the new
arcs (= the vertices) can be deleted. If x is a terminal, then

• for Unrestricted, directed V-Cut

– make x− the new si if x = si

– make x+ the new ti if x = ti

• for Restricted, directed V-Cut

– do not split x.



Chapter 3

Classical complexity of
Min-Multicut

3.1 Polynomial: uniform paths and cycles

On uniform paths, Min-Multicut is polynomial [23]. Assume the path
({x1, · · · , xn}, {{xi, xi + 1}|i = 1, · · · , n − 1}) is arranged on a horizontal
line. Since the graph is undirected, it can be assumed w.l.o.g. that for all
the terminalpairs {si, ti} ti is to the right of si. The edge on the left of the
leftmost ti can be cut, because since si is on the left of ti, there has to be
at least one cut to the left of ti. Since ti is the leftmost t, cutting any edge
further to the left can only downgrade the solution, because edges further to
the left might not cut a terminalpair {sj, tj} whose sj is between ti and the
edge further to the left, so the edge on the left of ti is an optimal choice. After
cutting this edge, every disconnected terminalpair can be removed from P
and the algorithm can start over on the remaining path on the right of ti.
The following algorithm iterates over the vertices from left to right, collects
all indices j of terminalpairs {sj , tj} that are not disconnected yet in a set
S. Whenever a tj is met, the edge on its left is cut, unless {sj , tj} is already
disconnected, which is the case if j 6∈ S.

S := ∅
for i = 1, · · · , n do

if xi = tj for a j ∈ S then
cut {xi−1, xi} ∈ E

S := ∅
fi
S := S ∪ {j|{sj, tj} ∈ P with xi = sj}

done

43
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The algorithm obviously has a running-time of O(n2), considering that
for every xi there can be at most n − 1 vertices from which xi must be
disconnected. Actually every vertex only needs to be disconnected from at
most 2 other vertices, namely the closest ones in both directions, that are
together with xi in P, but removing all other terminalpairs takes O(n2)
either.

On uniform cycles, a minimum multicut can easily be found by trying
each edge as first cut and using the O(n2) algorithm for the remaining
path, so the running-time is O(n3). This can be improved by excluding
the edges that have already been tested as first cut, but the complexity class

O (
∑n

i=1 i
2) = O

(
n·(n+1)·(2·n+1)

6

)
= O(n3) stays the same.

3.2 Polynomial: undirected networks with

l = 2

For undirected multi-commodity networks with l = 2, Hu showed [56] that
Min-Multicut = Max-Multiflow holds, but Itai later showed [57] that
Hu’s proof only works for integral and rational capacities. For real capacities
it failed because Hu had proven that his algorithm for multiflow with l = 2
only terminated when the constructed multiflow defined a multicut. The
problem with this proof was that his algorithm can run infinitely on multi-
commodity networks with real capacities. Itai’s O(n3) algorithm did not
have this problem, so his algorithm was conclusive proof for the equality for
real capacities.
On directed uniform multi-commodity networks with l = 2, Min-Multicut
is already NP-complete (see 3.3.2).

The following algorithm is Hu’s algorithm. Itai’s corrections are very
much like Edmonds’ and Karp’s correction to Ford’s and Fulkerson’s
algorithm. (for completeness it should be added that Hu’s algorithm is older
than Edmonds’ and Karp’s algorithm).

The algorithm starts by determining a max-flow for {s1, t1}. Of course
the s1−t1 flow might block edges that s2−t2 needs to use (see fig. 2.1), so in
the second phase, flow of commodity 1 is rerouted. This is done by selecting
(not necessarily edge-disjoint) pairs of so called forward- and backward
paths between s2 and t2.
The forward path is only allowed to use edges {x, y} (w.l.o.g. the path visits
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x before y) if

f(x, y, 1) − f(y, x, 1)︸ ︷︷ ︸
1-flow from x to y

+ f(x, y, 2)− f(y, x, 2)︸ ︷︷ ︸
2-flow from x to y

< c({x, y})

Note that flow from y to x counts negatively, so the above term can be
smaller than c({x, y}) by having flow from y to x, which can be reversed.
The backward path is only allowed to use edges {x, y} (w.l.o.g. the path
visits x before y, so on the path, y is closer to s2), if

f(x, y, 1) − f(y, x, 1)︸ ︷︷ ︸
1-flow from x to y

+ f(y, x, 2)− f(x, y, 2)︸ ︷︷ ︸
2-flow from y to x

< c({x, y})

Along the forward path, the flow of both commodities is increased.
This can mean increasing flow on unsaturated edges, but it can also mean
decreasing flow in the opposite direction. Since s1 6= s2 or t1 6= t2, increasing
1-flow on an s2 − t2 path violates the flow preservation. t2 will have 1-
overflow, while s2 will have 1-underflow. This is counterbalanced through
the backward path. Along the backward path t2−s2 , the flow of commodity
1 is increased and flow of commodity 2 is decreased. On edges that are shared
by both paths, this means that

• 1-flow is increased in both directions (increasing it in one direction
annulls the increased flow in the other direction)

• 2-flow is increased on the forward path and decreased on the backward
path, which means that in both cases the 2-flow towards t2 is increased

On edges that are only on the forward path, the flow of both commodities
towards t2 is increased, on edges that are only on the backward path, the
1-flow towards t2 is decreased (or in other words, the 1-flow towards s2 is
increased). So on the cycles between the paths, the 1-flow is rerouted and
2-flow is split up and routed towards t2 partially along the forward path and
partially along the backward path.
In fig. 3.1, the changes along the forward path are indicated by the black
arrows in the upper half of the picture, the changes along the backward path
are indicated by the black arrows in the lower half. The gray arrows indicate
how the flow is changed by these operations.

The algorithm does not guarantee integral flow of the commodities on
every edge (Maximum Integer Multiflow was already NP-complete on
(un)directed, uniform networks with l = 2), but it guarantees the flow of
every commodity on every edge to be a multiple of 1

2
if all capacities are
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Figure 3.1: The changes along the forward- and backward path in Hu’s
algorithm

integral (this property is called half-integrality). Integrality follows, if all
capacities are even integers, because in this case all capacities can be halved,
then a half-integral multiflow can be determined and doubled.

3.3 NP-completeness

Besides the proofs that are presented here, Min-Multicut is also NP-
complete for interval graphs [52], grids [9] and walls [14]. Membership in
NP is obvious for every variant of Multicut, because a nondeterministic
Turing machine can (nondeterministically) generate a solution and test it for
validity in deterministic polynomial time, so only NP-hardness remains to
be proven.

3.3.1 Uniform undirected networks with l = 3

For l = 3 Min-Multicut on undirected, uniform multi-commodity networks
is already NP-hard [25]:

Let (V,E) a graph. The Max-Cut problem asks for a partitioning of
V = V1

.
∪ V2, such that |{{x, y} ∈ E|x ∈ V1, y ∈ V2}| becomes maximal.

Max-Cut is NP-complete [59, 46] and it can be P-reduced to Multiway-
Cut with 3 terminals, which can trivially be P-reduced to Min-Multicut
with 3 terminalpairs.

Theorem 3.3.1.1. Max-Cut ≤P Uniform Multiway Cut with l = 3

Proof. Let (V,E) a graph. Add 3 vertices s1, s2, s3 to the graph, which
are the terminals that have to be disconnected from each other T =
{s1, s2, s3}. Replace every edge {x, y} by two paths of length 3 (x, x1, y1, y)
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and (x, x2, y2, y). Connect the terminals s1, s2, s3 to the vertices of these
paths in the following way:

1. s1 is connected to x, x2, y, y1

2. s2 is connected to x, x1, y, y2

3. s3 is connected to x1, x2, y1, y2

The edges that are incident to si get capacity 4, but this definition can be
changed to adding 4 paths of length 2, to work for uniform multigraphs.
An (i, j)-separator is a set that disconnects s1, s2, s3 from each other while
keeping x connected to si and y connected to sj. A (1, 2)-separator with
value 27 is

{{s1, y}, {s1, y
′}, {y, y′}, {s2, x}, {s2, x

′}, {x, x′}, {s3, x
′′}, {s3, y

′′}, {x′′, y′′}}

and a (2, 1)-separator with value 27 is

{{s1, x}, {s1, x
′′}, {x, x′′}, {s2, y}, {s2, y

′′}, {y.y′′, }, {s3, x
′}, {s3, y

′}, {x′, y′}}.

For every other pair (i, j), a minimum (i, j)-separator has value 28 or more.
In particular the minimum (1, 1)- and (2, 2)-separators (consider that (i, i)-
separators leave x and y connected) have value 28.

(V,E) has a max-cut of size k if and only if the resulting Multiway-Cut
instance with 3 terminals has a Multiway-Cut of size ≤ 28 · |E| − k. The
edges between the partitions of a max-cut of (V,E) correspond to the (1, 2)-
or (2, 1)-separators and the partitions of the max-cut correspond to the sets
of vertices that stay connected to s1 and s2 respectively. The connections
between s1, s2, s3 on the gadget graphs for the edges within V1 and V2 are
destroyed by (1, 1)-separators or (2, 2)-separators respectively.

3.3.2 Uniform directed networks with l = 2

Garg, Vazirani and Yannakakis reduced undirected Multiway-Cut with
l = 3 (see 3.3.1) to Multiway-Cut on uniform digraphs with l = 21 (which
can trivially be P-reduced to directed uniform min-multicut with l = 2). For
this, replace every edge {x, y} with the gadget graph from fig. 3.2 (this is
the FPT-reduction from undirected to directed Min-Multicut from 2.3).
The 3 old terminals s1, s2, s3 now get connected to 2 new terminals s′1, s

′
2 as

shown in fig. 3.3. Where the arcs between the old and the new terminals get

1This is no contradiction to the polynomiality of Min-Cut because in directed
Multiway-Cut with l = 2, all the s1 − s2 paths, but also all s2 − s1 paths must be
destroyed (and unlike in the undirected case, the paths do not necessarily coincide).
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a large capacity (or many multiple parallel paths of length 2), so that the
paths between the new terminals can only be destroyed by destroying paths
between the old terminals. Whenever there is a path between two of the old
terminals left, there is a path in one direction between the new terminals.

3.3.3 Uniform, undirected stars

There is a simple P-reduction from Vertex Cover (which is NP-complete
[59, 46]) to Min-Multicut instances on stars [49]. So Min-Multicut is
already NP-hard for uniform, undirected stars, which is a very strong result,
because stars are very simple structures.

Theorem 3.3.3.1. Vertex Cover ≤P Min-Multicut on stars

Proof. Let (w, k) with w = (V,E) an instance of Vertex Cover. Now
construct a star (V ′, E ′) and a set of terminalpairs P. V ′ = V

.
∪ {c}, the

new vertex c will be the center of the star; every old vertex will be connected
to it E ′ = {{c, x}|x ∈ V }. The old edges are turned into terminalpairs
P = {{s, t}|{s, t} ∈ E} (this means P = E). To destroy an s − t path,
one can remove the edge {s, c} or the edge {t, c}. Removing an edge {x, c}
corresponds to selecting x ∈ V as part of a vertex cover.
Show that (V,E) has a vertex cover of size k if and only if (V ′, E ′,P) has a



3.3. NP-COMPLETENESS 49

multicut of size k:

Let C = {x1, · · · , xk} ⊆ V a vertex cover of size k for (V,E), set
C ′ = {{x1, c}, · · · , {xk, c}}. Suppose there was a pair {s, t} ∈ P and a
path (s, c, t) left in (V ′, E ′ − C ′), then {c, s} and {c, t} are not in C ′. Hence
s and t are not in C, but {s, t} ∈ P means that there is an edge {s, t} in E,
which would not be covered by C, so C is not a vertex cover of (V,E).  

Let C ′ = {{c, x1}, · · · , {c, xk}} a multicut of size k for (V ′, E ′,P), set
C = {x1, · · · , xk}. Suppose there was an edge {x, y} ∈ E that was not
covered by C, then x and y are not in C. Hence {c, x} and {c, y} are not
in C ′, but {x, y} ∈ E means that there is a terminalpair {x, y} ∈ P, which
would not be cut by C ′, so C ′ would not be a multicut for (V ′, E ′,P).  

The NP-hardness on stars implies NP-hardness for caterpillars, trees,
cacti, planar, bipartite and perfect (also known as Berge) graphs. Note that
the reduction retains the size of a solution, so this is also an FPT-reduction.

3.3.4 Uniform, undirected trees with ∆ = 3

The problem 3SAT or 3CNF-SAT asks for the satisfiability of propositional
logic formulas in conjunctive normal form (CNF) with exactly 3 literals per
clause

∧
(x∨y∨z). This is a famous, NP-complete problem [46] and there is a

P-reduction to Min-Multicut on trees with ∆ = 3 by Călinescu, Fernandes
and Reed [14].

Theorem 3.3.4.1. 3SAT ≤P Min-Multicut on uniform, undirected
trees with ∆ = 3

Proof. Let ϕ a 3CNF formula with n variables and m clauses. For every
variable xi, a gadget graph with 3 vertices is constructed: a root with
2 children that are labeled with xi and xi. For each of these gadgets, a
terminalpair {xi, xi} will be part of P. For every clause Cj = (x ∨ y ∨ z), a
gadget graph with 5 vertices is constructed: a root with 2 children, one of
which is labeled z, the other one is an internal vertex wj, that has x and y

as children. For these gadgets, two terminalpairs {x, y} and {z, wj} are part
of P. Finally, the roots of the gadget graphs are connected by an arbitrary
binary tree and all the literals in the clause-gadgets become terminalpairs
with their respective vertex from the variable-gadgets.

It is easy to see that 2m + n cuts are already needed to separate the
terminalpairs of the gadget graphs alone, because every variable-gadget
requires 1 cut and every clause-gadget requires 2 cuts.



50 CHAPTER 3. CLASSICAL COMPLEXITY OF MINMC

xi xi

z

wj

x y

Figure 3.4: Gadgets for variable xi and clause Cj = (x ∨ y ∨ z)
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Figure 3.5: The possible cuts for {z, wj}, {x, y} ∈ P with 2 cuts

These 2m+ n cuts can be arranged so that no further cuts are required,
if and only if ϕ is satisfiable. As you can see in fig. 3.5, every separation
of {z, wj} and {x, y} that uses only 2 cuts, leaves a path between the root
and one literal. This literal will satisfy the clause in a satisfying assignment.
It can only be disconnected from its corresponding vertex in the variable-
gadget by using the one cut of the variable-gadget on the edge to the vertex
that has the same sign as the literal from the clause-gadget. This cut in the
variable-gadget corresponds to the truth assignment to that variable.

If the roots were not connected by a binary tree, but by a path, then
∆ would be 4 (still constant), but the pathwidth would become 2, because
3 policemen are needed to catch a fugitive without knowing where he is:
one blocks the path, one occupies wj and the last one successively visits the
leaves. If the fugitive has not been found, then proceed to the next vertex of
the path.

3.3.5 DAGs, 13-layer digraphs, caterpillars with ∆ = 5

Bentz generalized the proof for NP-completeness of Min-Multicut on trees
with ∆ = 3 (3.3.4) so that it works for many other Multicut versions
and graph classes [7]. The general method requires only gadget graphs for
variables and clauses and a component Q that connects every variable-gadget
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to every clause-gadget.

• The gadget-graph of a variable xi must have two vertices xi, xi and a
set of terminalpairs P ′ ⊆ P such that there are two possible deletions2,
that both disconnect all terminalpairs in P ′, but one disconnects xi

from Q and keeps xi connected to Q, the other one disconnects xi from
Q and keeps xi connected to Q. No single deletion may disconnect all
terminalpairs in P ′ and both xi and xi from Q.

• The gadget graph of a clause Cj = x ∨ y ∨ z contains three vertices
x, y, z and a set of terminalpairs P ′ ⊆ P. There are three3 sets of
two elements dx, dy, dz. The removal of the elements of any set must
disconnect all terminalpairs in P ′, but dα leaves α connected to Q and
disconnects the other ones from Q. No deletion of two elements may
disconnect all terminalpairs in P ′ and all of x, y, z from Q.

• All the literals in the clause-gadgets must become terminalpairs with
their respective vertex from the variable-gadgets.

If these conditions are satisfied, then the argumentation for trees with
∆ = 3 is applicable in the same way to show NP-completeness of the given
Multicut version on the given graph class.

The gadgets for Min-Multicut on uniform DAGs are shown in fig. 3.6.
For variable-gadgets, a terminalpair (xi, x

′
i) is in P. For clause-gadgets, the

terminalpairs (z′, wj) and (x′, y) are added. Q can be a directed path of length
n +m, where the variable-gadgets are attached to the first n vertices of the
path, followed by the m clause-gadgets. The resulting DAG has ∆+ = 2 and
∆− = 2.

A q-layer digraph [55] is a digraph whose vertex set can be partitioned
into q partitions V = V1

.
∪ · · ·

.
∪ Vq such that every arc (x, y) has x ∈ Vi and

y ∈ Vi+1 for some i. Of course every q-layer digraph is a DAG. The DAGs
constructed before are 13-layer digraphs if for Q, a single vertex is used and
the diagonal arcs that go from upper left to lower right, are subdivided twice.
The first 4 layers are for the variable gadgets, the fifth layer is Q, followed
by 8 layers for the clause gadgets.

2It depends on the Multicut version, which elements can be deleted
3This is actually a slight generalization of Bentz’ result, because he stayed closer to

Călinescu, Fernandes and Reed. He demanded four sets, two of which preserve a connection
between z and Q. Also he demanded exactly one terminalpair in variable-gadgets and
exactly two terminalpairs in clause-gadgets and he demanded the sets to be disjoint.
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Figure 3.6: Gadgets for variable xi and clause Cj = (x ∨ y ∨ z)

The proof for NP-completeness of Min-Multicut on uniform
caterpillars with ∆ = 5 by Guo, Hüffner, Kenar, Niedermeier and Uhlmann
[52] is older than Bentz’ generalization, but it is actually an application of
Bentz’ result, since they specify gadget graphs and then “manually” argue
in the same way as Călinescu, Fernandes and Reed.

3.4 Approximability

Max-Multiflow=Min-Multicut does not hold, but much attention was
paid to the gap between these values. The results in this area always came
along with approximation algorithms whose quality equal the boundaries on
the gap. Most of the algorithms work by searching a multicut, using the result
of a linear program for the relaxed problem. Leighton and Rao [71] were the
first who found an approximation algorithm. It has a quality ofO(log(n)) and
works for uniform multi-commodity networks. This result was generalized by
Klein, Agrawal, Ravi and Rao [64] who used a similar technique to obtain an
approximation for general multi-commodity networks, which has a quality
of O(log(C) · log(D)) where C is the sum of all capacities and D is the sum
of the minimal requirements (2.1.2). Tragoudas [89] improved the quality to
O(log(n) · log(D)). Garg, Vazirani and Yannakakis [47] improved this further
to O(log(l) · log(D)). Finally Plotkin and Tardos [79] showed an O(log(l)2)
approximation.

For planar networks, Klein, Plotkin and Rao [65] found an O(log(D))
approximation, which was improved by Plotkin and Tardos [79] to O(log(l))
and finally Tardos and Vazirani [37] found an O(r3) approximation for Kr,r-
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free graphs, which is an O(33) = O(1) approximation for planar graphs,
since planar graphs are K3,3-free [69]. For trees, Garg, Vazirani and
Yannakakis [49] presented a 2-approximation algorithm that simultaneously
is a 1

2
-approximation for Max-Integer-Multiflow on trees. A simple

2-approximation algorithm for uniform trees is mentioned in 5.3.

To answer the question for a polynomial time approximation scheme
(PTAS) or even a fully polynomial time approximation scheme (FPTAS), the
complexity class MaxSNP is needed. MaxSNP is defined [78] using Fagin’s
characterization [40] of NP as the class of problems that are axiomatizable
in second-order logic with a formula of the form

∃S.∀x.∃y.ψ(x, y, G, S)

where the first ∃ quantifies a structure, the other 2 quantifiers quantify
vectors and ψ is a quantifier-free formula. Strict NP (SNP) is restricted
to formulas of the form

∃S.∀x.ψ(x,G, S)

although this is no actual restriction, since the existential quantifiers can
be replaced by function symbols in the quantified structure S (Skolem
normalform). MaxNP and MaxSNP0 now don’t ask for the existence of
a structure S that satisfies ψ for all assignments to x, but that satisfies ψ
for a maximum number of assignments to x.

MaxNP : max
S

|{x|∃y.ψ(x, y, G, S)}|

MaxSNP0 : max
S

|{x|ψ(x,G, S)}|

The class MaxSNP is the closure of MaxSNP0 under L-reductions, which
are defined as follows: Let L an optimization-problem over Σ with optimal
solutions opt : Σ∗ → R and L′ an optimization-problem over Γ with optimal
solutions opt′ : Γ∗ → R. A function g : Σ∗ → Γ∗ is an L-reduction , if there
are two constants α, β, such that

• opt(w) ≤ α · opt′(g(w)) for all w ∈ Σ∗

• From a solution for g(w) with cost c, a solution for w can be constructed
in polynomial time with cost at most opt(w) + β(c− opt′(g(w)))

This definition regards minimization-problems. If at least one of L and L′

is a maximization-problem, then there are slightly different definitions in
[78]. Note that L-reductions preserve polynomial approximability. From
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a polynomial approximation for L′ with quality 1 + ε, a polynomial
approximation for L can be constructed with quality 1 + εαβ.

Min-Multicut is MaxSNP-hard, because the reduction in 3.3.3.1 is
an L-reduction with α = 1 and β = 1 and Vertex Cover is MaxSNP-
hard, because its special case Vertex Cover-B is MaxSNP-hard [78]. The
MaxSNP-hardness implies [4] that there is no PTAS (unless P=NP) and
hence no FPTAS for Min-Multicut and not even for Min-Multicut on
stars. This is bad news, since the existence of an FPTAS would have entailed
fixed parameter tractability in k [13, 5]. Călinescu, Fernandes and Reed
found a PTAS for Unrestricted Min-V-Cut on uniform networks with
bounded treewidth which extends to Min-Multicut with bounded degree
and bounded treewidth, since the linegraph of a network with bounded degree
and bounded treewidth, has bounded treewidth [14].

A recent result by Chawla, Krauthgamer, Kumar, Rabani and Sivakumar
[16] says that Min-Multicut is not even approximable to within a constant
ratio or even a ratio of Ω(log(log(n))), assuming Khot’s [62] unique games
conjecture is true.

For further details refer to [8], which is a bibliography on Min-Multicut
and Max-Multiflow, that mostly contains works on approximability.



Chapter 4

Parameterized complexity of
Min-Multicut

4.1 Fixed parameter intractability

Using lemma 1.4.1.2 and the NP-completeness of Min-Multicut on uniform
stars (3.3.3), fixed parameter tractability of Min-Multicut can be ruled
out for many sets of possible parameters. Denotations are taken from
[91]. (Nontrivial), uniform stars ({c, x1, · · · , xn}, {{c, xi}|i = 1, · · · , n})
simultaneously have

• Treewidth tw = 1, as they are trees

• Pathwidth pw = 1, because any ordering of {c, x1}, · · · , {c, xn} is a
path-decomposition

• No cycles ν = 0, because trees by definition have no cycles

• A maximum path length of Λ = 2 between any terminalpair, since
every vertex is either the central vertex or connected to it, so there
exists a path ≤ 2 between any pair of vertices and paths in trees are
unique

• A diameter dm = 2, because there is no pair of vertices with minimum
distance > 2, as their maximum distance is 2

• A radius of r = 1, because the central vertex does not have a distance
> 1 to any vertex

• A 2-coloring, because trees are bipartite, so χ = 2

55



56 CHAPTER 4. PARAMETERIZED COMPLEXITY OF MINMC

• No complete 3-coloring, because a second and third color (after the
color for c) could not be connected, as all edges contain c. Hence the
achromatic number is ψ = 2

• A pseudoachromatic number of ψs = 2, also because no complete 3-
coloring exists.

• No clique > 2, because that would imply a cycle, so ω = 2 for all trees

• A maximum matching of size α0 = 1, containing {c, xi} for some i. No
matching can contain more edges, because they are all incident to c

• A vertex cover of size β = 1 (containing just c)

• A dominating set of size γ = 1 (containing just c)

• A bondage number of b = 1, because in stars, the deletion of any edge
makes it necessary to include the incident end-vertex into a dominating
set

• An inclusion-maximal irredundance set of size ir = 1 (containing just
c)

• A vertex separator of size σ = 1 (removing a neighbor of an end-vertex
separates the end-vertex from all other vertices and all trees have at
least 2 end-vertices)

• An edge separator of size λ = 1 (removing an edge that is incident to
an end-vertex separates the end-vertex from the other vertices and all
trees have at least 2 end-vertices)

• Vertices of degree 1 (every tree contains 2 end-vertices), so the
minimum degree is δ = 1

• An average degree of ϕ = 2|E|
n−1

= 2

• An index of µ = 0, because trees have index 0

• Exactly one spanning tree, which is the star itself, so z = 1

Also stars have many parameters close to n, so that their distances to n are
also parameters in which Min-Multicut simultaneously is not FPT. stars
have

• A vertex of degree ∆ = n− 1, namely c
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• A smallest clique-decomposition of size Θ = n−1, because a maximum
clique has size 2 and therefore all n edges have to be in different cliques
for all trees

• A smallest edge coloring of size χ′ = n−1, because all edges are incident
to c, so all edges must have different colors

• A total coloring of size χT = n, containing the n − 1 colors necessary
for the edges, one additional color for c (all edges are incident to c, so
no color can be reused) and the vertex xi can be colored with the same
color as edge {c, x(i mod n)+1}

• A maximum independent set of size α = n− 1, containing all vertices
except c

• An edge cover of size β0 = n− 1, because every xi can only be covered
by the edge {c, xi}

• All vertices except c are end-vertices, so |Γ| = n− 1

These facts yield

Theorem 4.1.1. Min-Multicut is not FPT in any subset of

{tw, pw, ν,Λ, dm, r, χ, ψ, ψs, ω, α0, β, γ, b, ir, σ, λ, δ, ϕ, µ, z

n− ∆, n− Θ, n− χ′, n− χT , n− α, n− β0, n− |Γ|}

Also using lemma 1.4.1.2, the NP-completeness on trees with ∆ = 4 and
pw = 2 (3.3.4) implies that Min-Multicut is not FPT in any subset of

{∆, tw, pw, ν, χ, ω, σ, λ, δ, ϕ, µ, z, n− Θ}

The Min-Multicut instances, that are constructed in 3.3.1 have1

• l = 3

• Every vertex has distance ≤ 3 to s3, so the diameter is dm ≤ 6

• The radius is r ≤ 6, because r ≤ dm [91]

• The vertices that are adjacent to the terminals si have degree 2, so
δ ≤ 2

1Assuming the case where the terminals si are connected to the other vertices using 4
parallel length 2 paths instead of 1 edge with capacity 4
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• When the Max-Cut instance has n vertices and m edges, then the
constructed Min-Multicut instance has n + 4m + 3 + 48m vertices
and 6m+ 96m edges, so the average degree is

ϕ =
2 · (6m+ 96m)

n+ 4m+ 3 + 48m− 1

=
204m

n+ 52m+ 2

≤
204m

52m

=
51

13
< 4

• A vertex separator of size σ ≤ 2 because σ ≤ δ. Removing all adjacent
vertices of a vertex with degree δ separates that vertex from the rest
graph.

• An edge separator of size λ ≤ 2 because λ ≤ δ. Removing all incident
edges of a vertex with degree δ separates that vertex from the rest
graph.

So using lemma 1.4.1.2, it can be concluded that Min-Multicut is not
FPT in any subset of

{l, dm, r, δ, ϕ, σ, λ}

4.2 Fixed parameter tractability in {l, k}

D. Marx provided an O∗(kk4k3

) FPT algorithm [73] for Multiway V-Cut
and modified it to solve Minimum V-Cut in O∗(4k(l−1)kk4k3

), which is a
running-time that is FPT in {l, k}. Min-Multicut can be FPT-reduced to
Minimum V-Cut by working on the linegraph.
The algorithm for Multiway V-Cut is a bounded searchtree algorithm that
selects an arbitrary terminal t ∈ T that is not yet separated from T − t and
branches over the O(k4k2

) important separators (see below) that have a size
of at most k. In every branch k is decreased by at least 1, so this algorithm
has a running-time of O∗((k4k2

)k) = O∗(kk4k3

).

Let S an (X, Y )-separator (a set of vertices whose removal disconnects
all vertices in X from all vertices in Y ). An (X, Y )-separator S ′ dominates
S if |S ′| ≤ |S| and R(X,S) ( R(X,S ′), where R(X,S) denotes the set of all
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vertices that are reachable from X − S in (V − S,E). This means that S ′ is
“closer” to Y and not larger than S. An important (X, Y )-separator is
an exclusion-minimal, undominated (X, Y )-separator.

Theorem 4.2.1. For any X, Y there are at most 4k2

important (X, Y )-
separators of size k (independent of the graph)

Proof. Induction

Induction foundation k = 1 A separator of size 1 can only be a cut-
vertex. Only the cut-vertex that is closest to Y and farthest from X is
important because it dominates all other cut-vertices between X and
Y .

Induction hypothesis For a fixed k there are at most 4(k−1)2 important
(X, Y )-separators of size k − 1.

Induction step Let S an important (X, Y )-separator of size k and H

another important (X, Y )-separator of size k. The question is how
many possibilities there are for H .

Case 1 Z := S ∩ H 6= ∅, then H\Z is an important (X\Z, Y \Z)-
separator in (V \Z,E) of size ≤ k−1, so the induction hypothesis
says there are at most 4(k−1)2 candidates for H per Z and since
Z ( S, there are at most 2k candidates for Z, so there are at most
2k4(k−1)2 such H .

Case 2 S ∩ H = ∅. Divide H into H1 = H ∩ R(X,S) and
H2 = H ∩ R(Y, S) and divide S into S1 = S ∩ R(X,H) and
S2 = S ∩ R(Y,H) (see fig. 4.1).

X

YH1

H2S1

S2

Figure 4.1: The partitionings H = H1

.
∪ H2, S = S1

.
∪ S2

If H1 = ∅ then R(X,S) ∪ S ( R(X,H), (in the picture H would
be on the right of S) and hence H would dominate S. Conversely,
if H2 = ∅ then R(X,H) ∪H ( R(X,S), (H would be on the left
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of S) and hence S would dominate H . Therefore, H1 6= ∅ and
H2 6= ∅ and in particular |H1| ≤ k − 1 and |H2| ≤ k − 1.

H1 is an (X ∪ S1, S2)-separator in (V ∩R(X,S) ∪ S,E) which in
the picture is the left part of the graph up to and including S.
H2 is an (S1, Y ∪ S2)-separator in (V ∩ R(Y, S) ∪ S,E) which in
the picture is the right part of the graph up to and including S.
These are both important separators, since if H1 was dominated,
then the dominating separator could be united with H2 to obtain
a separator that would dominate H and if H2 was dominated,
then the dominating separator could be united with H1 to obtain
a separator that would dominate H , so in both cases H would not
be important.

Since H1 and H2 are important separators of size ≤ k − 1, the
induction hypothesis says there are at most 4i2 such H1 (where
i = |H1|) and 4(k−i)2 such H2 per partitioning S = S1

.
∪ S2 and

there are at most 2k such partitionings because |S| = k.

Altogether the number of important (X, Y )-separators is at most

S︷︸︸︷
1 +

Case 1︷ ︸︸ ︷
2k4(k−1)2 +

Case 2︷ ︸︸ ︷
k−1∑

i=1

2k4i24(k−i)2

≤ 1 + 2k4(k−1)2 + (k − 1)2k4(k−1)2+1

≤ k2k4(k−1)2+1

≤ 4k4(k−1)2+1

= 4k+k2−2k+2

≤ 4k2

The constructions in the cases of the induction step yield an algorithm to
enumerate all important separators (so it is possible to branch over them):
Select an initial separator S0 using flow algorithms. Construct an important
separator S by removing redundant vertices (vertices s for which S − s is
still a separator), removing subsets of S0 and using flow algorithms again.
Then enumerate subsets Z ( S and recursively enumerate the important
(X\Z, Y \Z)-separators of size k − |Z| in (V \Z,E) and unite them with Z.
Finally enumerate subsets S1 ( S and recursively enumerate the important
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(X ∪S1, S2)-separators H1 in (V ∩R(X,S)∪S,E) of size ≤ k and unite each
of them with each important (S1, Y ∪S2)-separator H2 in (V ∩R(Y, S)∪S,E)
of size k − |H1|.

For every t ∈ T there exists a minimum multiway-cut that contains
an important ({t}, T − t)-separator: Such a separator can be obtained
by “pushing” any minimum multiway-cut S towards T − t and removing
redundant vertices. Thereby no path ti−tj with ti, tj ∈ T−t can be connected
again, because this would also establish paths t−ti and t−tj , so the resulting
important ({t}, T − t)-separator would not separate t from T − t. Therefore

branching over all
k∑

i=1

4i2 ≤ k4k2

important separators is complete.

The modified algorithm for Minimum V-Cut selects an arbitrary
terminalpair {si, ti} ∈ P and branches over the important ({si}, T ∪ {ti})-

separators for some T ⊆

(
l⋃

j=1

{sj , tj}

)
\{si}. As before, there are O(k4k2

)

possibilities per subset T and since |
l⋃

j=1

{sj, tj}| ≤ 2l, there are 22l−2 = 4l−1

sets T with si 6∈ T, ti ∈ T , so there are O(4l−1k4k2

) branches, which results in
a total running-time of O∗((4l−1k4k2

)k) = O∗(4k(l−1)kk4k3

). Marx mistakenly
said the running-time was O∗(2klkk4k3

), which stems from the erroneous

assumption |
l⋃

j=1

{sj, tj}| = l that leads to 2l subsets instead of 22l = 4l.

4.3 Fixed parameter tractability in {tw, l}

An ExtMSO2 formula can be constructed from any instance of Min-
Multicut:

min C ⊆ E.
∧

{si,ti}∈P

¬StillConnected(si, ti, C)

where si and ti are “StillConnected” in (V,E − C) iff every partitioning
V = U

.
∪ U with si ∈ U and ti ∈ U has an edge 6∈ C, that connects U and

U :

∀U ⊆ V.(si ∈ U∧ti 6∈ U) → ∃x ∈ U.∃y 6∈ U.∃e ∈ E.inc(x, e) ∧ inc(y, e)︸ ︷︷ ︸
exists edge e between U and U

∧e 6∈ C
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The length of the whole formula is bounded by O(l), so lemma 1.4.6.1 says
that Min-Multicut is FPT in {tw, l}.

Guo, Hüffner, Kenar, Niedermeier and Uhlmann found an algorithm that
is FPT in {tw, l}, that does not rely on Courcelle’s theorem [52]. This
algorithm2 is based on the observation that a multicut C is a separator such
that si and ti are in different components of (V,E − C) for all {si, ti} ∈ P.
Components can also be understood as color-classes in a vertex-coloring, so
the algorithm enumerates all possible colorings LS : S → {1, · · · , |S|} of the
terminals with |S| colors, where S =

⋃
P (the set of distinct terminals in P,

|S| ≤ 2 · l). Of course colorings that assign the same color to both vertices of
an {si, ti} ∈ P are unwanted. Testing this costs O(|P|) = O(l) per coloring.
From these at most |S||S| ≤ (2 · l)2·l initial colorings, a coloring extension
is searched, which is a coloring f : V → {1, · · · , α} of all vertices, where
α ≤ |S| is the number of colors that are actually used in the initial coloring.
From such a coloring, a multicut can be obtained by cutting all edges, whose
incident vertices have different colors. These edges are called bad edges . So
the goal is to find a coloring extension which has a minimum number of bad
edges.

This coloring extension is searched, using dynamic-programming on a
(w.l.o.g. nice) tree-decomposition (T,B). Let Tx the subtree of T rootet at
x ∈ T and let Gx = (Vx, Ex) the subgraph that is induced by the vertices in

the bags of Tx: Gx = G

[
⋃

y∈Tx

B(y)

]
.

For every vertex x of the tree T , create a table Ax with α|B(x)| rows, one
for each coloring of the vertices in bag B(x). Ax will be used to cache the
minimum number of bad edges in the subgraph Gx, given a coloring f of the
vertices in the bag of x, so Ax : (B(x) → {1, · · · , α}) → N.

For leaves x, Vx = B(x), so Ax(f) will just be the number of bad edges in
B(x), if B(x) is colored according to f . So for leaves, the table can be filled
by just enumerating the colorings f and counting the bad edges.

Ax(f) :=

{
∞ if f(v) 6= LS(v) for a v ∈ S ∩B(x)

|{{u, v} ∈ Ex|f(u) 6= f(v)}| otherwise

Note that colors are assigned to all vertices, including the terminals. If a

2Actually, they gave an algorithm for Restricted V-Cut and only mentioned the
changes that are required to make it work for Min-Multicut. Here, the algorithm with
applied changes is presented.
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coloring assigns a different color to a terminal, than the initial coloring, then
this coloring f is illegal and thus will get weight Ax(f) = ∞, so it will not
be used later.

After filling the tables of the leaves, the tables of the other vertices x are
filled in a bottom up order, by enumerating the colorings f of the bags and
computing Ax(f).

• Forget vertices x with child y: Such vertices have Vx

.
∪ {v} = Vy for

a v 6∈ Vx. Every coloring of Vy is a coloring of Vx with an additional
color for v, so the minimum number of bad edges in Gx, given coloring
f is the minimum number of bad edges in Gy, given the same coloring
of Vx, extended by some color for v.

Ax(f) := min{Ay(fv 7→c)|c ∈ {1, · · · , α}}

where

fv 7→c(x) :=

{
c if x = v

f(x) otherwise

Running time to fill the table: O(α|B(x)| · α) ⊆ O((2 · l)tw+1).

• Introduce vertices x with child y: In this case, Vx = Vy

.
∪ {v}. This

time, every coloring f of Vx is a coloring of all vertices in Vy which
has a fixed, additional color c for v 6∈ Vy, so the minimum number of
bad edges in Gx, given f is the minimum number of bad edges in Gy

given f (restricted to B(y)) plus the number of bad edges between v

and B(y) (because of rule 3 of tree-decompositions, all neighbors of v
in Gy are members of B(y))

Ax(f) :=

{
∞ if v ∈ S and c 6= LS(v)
Ay(f |B(y)) + |{u ∈ B(y) ∩N(v)|f(u) 6= c}| otherwise

Running time to fill the table: O(α|B(x)| · |B(y)|) ⊆ O((2 · l)tw · tw).

• Join vertices x with children y and z: Here, B(x) = B(y) = B(z),
so without manipulations, f is a coloring for all involved bags and
Vx = Vy ∪ Vz. The minimum number of bad edges in Gx, given f is
the sum of the minimum number of bad edges in Gy and Gz given f ,
but the bad edges in Ey ∩Ez are counted twice, so this number has to
be subtracted. By rule 3 of tree-decompositions, Ey ∩ Ez ⊆ Ex, so in
O(|B(x)|2) this value can be determined.

Ax(f) := Ay(f) + Az(f) − |{{u, v} ∈ Ex|f(u) 6= f(v)}|

Running time to fill the table: O(α|B(x)| · |B(x)|2) ⊆ O((2 · l)tw · tw2).
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By definition, the root r of the nice tree-decomposition has Gr = G, so
the minimum number of bad edges in G is the minimal entry in Ar. An
actual coloring can be obtained by tracing the tables back down. The overall
running-time of the algorithm is

O( (2 · l)2·l · (l︸ ︷︷ ︸
enum init colorings

+ (2 · l)tw+1 · tw2

︸ ︷︷ ︸
fill tables

· |V |︸︷︷︸
vertices in T (1.4.5)

)) ⊆ O((2·l)2·l+tw+1·tw2·|V |)

which is a running-time that is FPT in {tw, l}.

4.4 Fixed parameter tractability in

{tw((V,E ∪ P))}

Gottlob and Lee showed [51] that a uniform Min-Multicut instance
(V,E,P) can be transformed into a logical structure A = (U, v, e, adj, inc, p)
with

• universe U = V ∪ E

• unary predicates (sets) v(x) ⇔ x ∈ V and e(x) ⇔ x ∈ E

• binary predicates (relations)

– adj(x, y) ⇔ {x, y} ∈ E

– inc(e, x) ⇔ e ∈ E, x ∈ e

– p(x, y) ⇔ {x, y} ∈ P

A minimum multicut can then be found using an ExtMSO2 formula with
constant length:

min C.∀s.∀t.p(s, t) → ¬StillConnected(s, t, C)

The running-time is now FPT in the treewidth of the Gaifman graph of A

(see definition 4, lemma 5 and theorem 20 in [44]). The Gaifman graph G(A)
is the same as (V,E), except that the binary relation p adds edges between si

and ti for all {si, ti} ∈ P and inc adds paths of length 2 between all adjacent
vertices. The treewidth of G(A) is ≤ tw((V,E ∪ P)) + 1. The additional
si − ti edges are expressed in E ∪ P and at most one additional policeman
is needed to catch the fugitive. To be precise, one additional policeman is
needed if and only if (V,E) is a tree, because the fugitive can be chased
in the same way on G(A) as on (V,E ∪ P). Whenever an edge is cleared,
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the fugitive could be caught by a third policeman (which is available unless
(V,E) is a tree) if he had gone to the length-2 path that is parallel to the
cleared edge. So, the running-time is FPT in tw((V,E ∪ P)). It should be
noted that tw((V,E ∪P)) ≤ tw((V,E))+ l, because a fugitive can be caught
by placing a policeman on every si and otherwise chasing him like in (V,E).
So this result implies fixed parameter tractability in {tw, l} (4.3), but not
vice versa.

4.5 Fixed parameter tractability in {l,∆} and

{Λ, k}

There cannot be more than ∆ paths between any terminalpair {si, ti} ∈ P.
Hence Min-Multicut= k ≤ l · ∆ (see also lemma 6.2.4), so lemma 1.4.1.1
implies that Min-Multicut is FPT in ({l, k}\{k}) ∪ {l,∆} = {l,∆}.

If Λ is the length of a longest path between an si and its ti, then the
problem is FPT in {k,Λ}, because branching over all edges of an arbitrary
si − ti path would define a recursion-tree with branching factor Λ and height
k, so the running-time would be in O∗(Λk). Since Λ ≤ n, this is at most a
running-time of O∗(nk).
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Chapter 5

Fixed parameter tractability on
special graph classes

5.1 Uniform stars

In 3.3.3.1, the NP-completeness of Min-Multicut on stars had been proven
by a P-reduction from Vertex Cover. The construction also works vice
versa (this is also proven in [47] already) and it is also an FPT-reduction in
both directions:

Theorem 5.1.1. Min-Multicut on uniform stars ≤FPT Vertex
Cover

Proof. Let (V ′, E ′,P) with V ′ = {c, x1, · · · , xn}, E
′ = {{c, xi}|i = 1, · · · , n}

an instance of the undirected Min-Multicut problem on a star. Note
that w.l.o.g. we can assume that the center vertex c is not member of any
terminalpair in P, because otherwise lemma 6.3.2.1 is applicable. Show that
the graph (V,E) := ({x1, · · · , xn},P) has a vertex cover of size k if and only
if (V ′, E ′,P) has a multicut of size k.

Let C = {xi1 , · · · , xik} ⊆ V a vertex cover of size k for (V,E). Set
C ′ = {{xi1 , c}, · · · , {xik , c}}. Suppose there was a pair {s, t} ∈ P and a path
(s, c, t) left in (V ′, E ′ −C ′), then {c, s} and {c, t} are not in C ′. Hence s and
t are not in C, but {s, t} ∈ P means that there is an edge {s, t} in (V,E),
which would not be covered by C, so C is not a vertex cover for (V,E).  

Let C ′ = {{c, xi1}, · · · , {c, xik}} a multicut of size k for (V ′, E ′,P), set
C = {xi1 , · · · , xik}. Suppose there was an edge {x, y} ∈ E that was not
covered by C, then x and y are not in C. Hence {c, x} and {c, y} are not
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in C ′, but {x, y} ∈ E means that there is a terminalpair {x, y} ∈ P, which
would not be cut by C ′, so C ′ is not a multicut for (V ′, E ′,P).  

Vertex Cover is well analyzed and there are many fast FPT
algorithms. The current record is held by Chen, Kanj and Xia [17] with
a running-time of O∗(1.2738k) and a kernelization with kernel-sizes ≤ 2k
by Nemhauser and Trotter [75]. These algorithms can be applied to Min-
Multicut on uniform stars with the same running-times (except for the
reduction, which is computable in linear time, depending on the used data
structures) and kernel-sizes.

5.2 Stars with real capacities ≥ 1

Min-Multicut on stars with real capacities corresponds to Vertex Cover
with weighted vertices. Some rules from the uniform case don’t apply
anymore, like when there is a vertex x, which is member of only one
terminalpair {x, y} ∈ P, then {c, y} can be cut (which corresponds to
selecting neighbors of vertices of degree 1 for Vertex Cover). This rule
cannot be applied anymore, unless c({c, y}) ≤ c({c, x}) (see fig. 6.2).

This case is still FPT, because a bounded searchtree algorithm can be
used to solve it. In every recursion, choose an arbitrary terminalpair {x, y}
and branch over the two involved edges {x, c} and {y, c}. The branching
vector is (c({x, c}), c({y, c})) where both are at least 1. Thus, the recursion-
tree has at most 2k nodes and the running-time within every node is obviously
polynomial, because only the terminalpairs {z, x} or {z, y} need to be
removed from P for all z ∈ V . Therefore the algorithm has a running-
time of O(2k · p(n)).

Not all, but some improvements can still be derived from the Vertex
Cover algorithms. E.g. in the second branch you can cut all edges from
{{c, z} ∈ E|{z, x} ∈ P}, because in that case, it is decided that {x, c} will
not be part of the multicut, so all terminalpairs {z, x} must be separated
by {z, c}. If there is a terminalpair {x, y} ∈ P and x and y are both not
part of any other terminalpair (this corresponds to two connected vertices of
degree 1 in Vertex Cover), then the cheaper edge can be cut. Therefore
it can be assumed that there is a vertex x that is part of more than one
terminalpair, so branching over {x, c} and all members of {{y, c}|{y, x} ∈ P}
(which corresponds to x and N(x) in Vertex Cover) gives a branching
vector of at least (1, 2) with a branching factor of 1.618, so this yields a
running-time of O(1.618kp(n)).
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5.3 Uniform trees

In a rooted tree, the least common ancestor (LCA) of two vertices a, b is
the vertex v on the (unique) path between a and b that has the least distance
to the root. Figuratively speaking, when the vertices are arranged from top
(root) to bottom, then the LCA of a, b is the lowest vertex x, for which the
paths to a and b are both downwards.

The following algorithm for Min-Multicut on uniform trees was
invented by Guo and Niedermeier [53], it is a bounded searchtree algorithm
with branching factor 2 and tree-height k. The running-time within every
node of the recursion-tree is polynomial, so the overall running-time is
O(2kp(n)):

Select an arbitrary vertex r as root. Select a vertex x, which is the LCA
w.r.t. r of a terminalpair {si, ti} ∈ P such that there is no terminalpair
whose LCA has a larger distance to r. If x = si or x = ti, then cut the
edge from the si − ti path that is incident to x. Otherwise the si − ti path
has the form (si, · · · , s

′, x, t′, · · · , ti). In this case, branch over cutting {s′, x}
and cutting {x, t′} and start over recursively with parameter k − 1. Note
that selecting both {s′, x} and {x, t′}, instead of branching over them gives
a polynomial time approximation algorithm of quality 2.

The correctness and completeness of the algorithm follows from the fact
that x is a least common ancestor of maximum distance to the root. This
implies that no subtree below x contains both terminals of a terminalpair.
Therefore cutting an edge closer to x can only improve the solution, because
every terminalpair that has one terminal in the same subtree of x as si and
that can be cut by an edge deeper down, can also be cut by {x, s′} and every
terminalpair that has one terminal in the same subtree of x as ti and that
can be cut by an edge deeper down, can also be cut by {x, t′}. Since si− ti is
a terminalpair, at least one edge in one of the subtrees must be cut, so there
exists an optimal solution that contains {x, s′} or {x, t′}.

Notice that when x = si or x = ti, then there is only one choice of the
edge, so in these cases there is only one successor in the recursion tree, which
means that in this case the running-time is only half the time needed in the
other case. Hence it is a good idea to try every vertex as root (it can be
chosen differently in every recursion) and test whether this situation arises.
The improvement can be amplified, because it is not really necessary that x
is an LCA of maximum distance to r, it is sufficient if there is an LCA x with
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x = si or x = ti such that there is no terminalpair {sj, tj} within the same
subtree as ti or si respectively. This improvement costs only a polynomial
factor in the running-time and might often save exponential running-time,
so the sacrifice is probably worthwhile.

On trees there is only one path between any pair of terminals. Therefore,
if k was greater than l, then every terminalpair could be disconnected by
an individual edge and the instance would be solvable. Hence k ≤ l can
be assumed and thus lemma 1.4.1.1 implies that Min-Multicut on trees is
also FPT in ({l, k}\{k}) ∪ {l} = {l}.

5.4 Trees with integral capacities

When an edge has capacity> k, then obviously it cannot be part of a multicut
with total value ≤ k. Hence edges of capacity > k can be excluded, so we
can assume all edges to have capacities between 1 and k.

The algorithm by Guo and Niedermeier exploits the fact that cutting an
edge closer to the LCA x cannot downgrade the solution. When the tree
is not uniform, this is not true anymore, because an edge closer to x might
have a larger capacity than an edge deeper down. In a private conversation,
P. Rossmanith noticed that for integral capacities there are only k different
kinds of capacities and among the edges with the same capacity, it is still
better to choose the edge on the si − x or ti − x path that is closest to x.
So the algorithm by Guo and Niedermeier can still be applied, but there
are up to k different edges to be tried on both subtrees of x, which yields
a branching vector of (1, 1, 2, 2, 3, 3, · · · , k, k) on nodes of the recursion-tree
that have parameter k. A trivial running-time bound is O((2k)kp(n)), but
since the later branches reduce the parameter more, this is far from the actual
running-time.

Lemma 5.4.1. A tree in which a vertex with parameter k has the branching
vector

(1, · · · , 1︸ ︷︷ ︸
i times

, 2, · · · , 2︸ ︷︷ ︸
i times

, · · · , k, · · · , k︸ ︷︷ ︸
i times

)

has exactly (i+ 1)k vertices.

Proof. induction:

Induction foundation A vertex with parameter 0 has no successors, so
Ti(0) = 1 = (i+ 1)0.
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Induction hypothesis Ti(j) = (i+ 1)j for all j = 1, · · · , k for a fixed k

Induction step k → k + 1. The number of vertices in the tree is

Ti(k + 1) = 1 +
k+1∑

j=1

i · Ti(k + 1 − j)

= 1 + i ·
k∑

j=0

Ti(j)

= 1 + i ·
k∑

j=0

(i+ 1)j (induction hypothesis)

= 1 + i ·
(i+ 1)k+1 − 1

i
(geometric sum)

= (i+ 1)k+1

So this shows that the algorithm actually has a running-time ofO(3kp(n)),
because the recursion-tree has such branching vectors with i = 2. In practice,
the running-times will be better, because even if all different capacities appear
(which will also not be the case, usually), an edge of capacity c only needs to
be tested, if there was no edge with a smaller capacity closer to x, because
cutting an edge deeper in the subtree can only pay off, if it is cheaper than
the edges above it. So of all k!2 orders in which the capacities can appear in
the two subtrees, only one (k, k− 1, k− 2, · · · , 1) and (k, k− 1, k− 2, · · · , 1)
actually causes the 2 branches for all i = 1, · · · , k.

Niedermeier and Guo found an O(3dmn2) algorithm for non-uniform
trees, where d is the maximum number of si − ti-paths that pass a vertex or
edge [54].

5.5 Uniform directed acyclic graphs

Directed Feedback Vertex Set and Feedback Arc Set are problems
that ask for a minimum set of vertices or arcs, whose removal destroys
all directed cycles in a digraph. Chen Liu and Lu [18] (see also [80])
reduce Directed Feedback Vertex Set and Feedback Arc Set to
uniform Constrained Multicut on DAGs and present an O(k4kn3)
algorithm to solve that problem. Unfortunately Constrained Multicut
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is a variant of Multicut that has a set of pairs of sets as terminalpairs
P = {(S1, T1), · · · , (Sl, Tl)}. This alone would be no problem, because a
terminalsetpair (Si, Ti) could be replaced by multiple terminalpairs {(s, t)|s ∈
Si, t ∈ Ti} = Si×Ti, but the task is not to separate all s ∈ Si from all t ∈ Ti,

but to separate all s ∈ Si from all t ∈
i⋃

j=1

Tj, which seems closer related to

multiway-cut.

An immediate algorithm for Multicut on a uniform DAG (V,E,P) that
might come to ones mind is:
For each (si, ti) ∈ P add k+1 arcs (ti, si) to E. The resulting digraph (V,E ′)
has cycles that contain si and ti and that can only be destroyed by removing
arcs from E, which separate si from ti, so this would result in an instance of
Directed Feedback Arc Set. Indeed a feedback arc set of size ≤ k for
the resulting graph would also be a multicut for (V,E,P), but fig. 5.1 shows
that the converse is not necessarily true. (V,E,P) can have a multicut that
is not a feedback arc set for (V,E ′).

s2

s1

t2

t1

s2

s1

t2

t1

Figure 5.1: (V,E) has a multicut of size 0, but (V,E ′) has no feedback arc
set of size < 1

5.6 Uniform grids

An m × n-grid is a graph with m · n vertices V = {xi,j |i = 1, · · · , m, j =
1, · · · , n} and 2 ·m ·n−n−m edges E = {{xi,j, xi+1,j}, |i = 1, · · · , m−1, j =
1, · · · , n} ∪ {{xi,j, xi,j+1}|i = 1, · · · , m, j = 1, · · · , n− 1}.

Theorem 5.6.1. Min-Multicut is fixed parameter tractable in {k} on
uniform grids.

Proof. If m ≤ k and n ≤ k, then |V | ≤ k2 and thus every time-bounded
decision algorithm for Min-Multicut has an FPT running-time for such
instances. Therefore, only instances with m > k or n > k remain to be
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examined. Assume w.l.o.g. n ≥ m (otherwise the grid can be rotated),
which implies n > k. The grid cannot be cut through horizontally, since that
would require at least n > k cuts.

Assume there is one edge known to be a member of a min-multicut. For
an si − ti path, the absence of this edge is no obstacle, because this one edge
can easily be bypassed, unless more edges nearby are also cut (see fig 5.2).
The removed edge can be bypassed on the bold path, so one of these 3 edges
must also be cut or cutting the other edge was useless. Figuratively speaking,

Figure 5.2:

one can start cutting with a pair of scissors in one square and continuously
cut one of the edges that adjoin the rectangle that has been entered last.
This approach has a searchtree with branching-factor 3 and (since at most
k edges can be cut) height k, so this method will have a running-time of
O∗(3k).

Now examine the possibilities, where such a cut can be started and how
it can end. The examination starts with an algorithm for a situation that has
multiple assumptions and discusses the changes that are required, whenever
an assumption is dropped.

• Select an arbitrary terminalpair {si, ti} ∈ P. Assumptions:

– The grid is large (m > k and n > k, so that the grid cannot be
cut through vertically, either)

– si and ti are both far away from all borders (more than k steps)

– no other cuts are nearby (all other cuts are more than k steps
away from si and ti)

In this case, the cut has to enclose si or ti (such cuts are called island
cuts). Assume it has to enclose si. The cut must cross the horizontal
line on which si lies, somewhere. If the cut crossed the horizontal line
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more than k steps to the right of si, then more than k cuts would be
required to reach si, to enclose it. The case where the cut has to enclose
ti is analogous, so for such terminalpairs, there are only 2 ·k choices for
a first cut, from which the O∗(3k) cutting algorithm can start, so the
running-time is O∗(2 · k · 3k).

• The grid is large, si and ti can be close to a border, no other cuts are
nearby.
In this case, the cut can utilize the border to separate si from ti (such
cuts are called border cuts). If the cut reaches the border, then the
“pair of scissors” must be reset to the starting point of the cut, to
search for the cutting-path to the border in the other direction. If si

or ti is close to the right border, then the terminalpair may be cut by
a border cut to the right border. So in this case, the horizontal line on
the right of the terminal may be not crossed by a cut. Hence, the first
k edges on the horizontal line to the left of the terminal must be tried
as first cut. If the terminal is also less than k steps away from the left
border1, then all edges on the horizontal line must be tried, because a
border cut to the left border would also be possible. The running-time
in this case is O∗(4 · k · 3k).

• The grid is large, si and ti can be close to a border, other cuts can be
nearby.
In this case, the continuous cutting algorithm can come across another
cut and share edges with it (such cuts are called archipelago cuts),
so when a different cut is met, then the cutting can continue from any
rectangle that the other cut crosses and any rectangle, that another
cut crosses, which is reachable from it, moving only over edges that are
cut. Since all other cuts together cross at most k rectangles, there are
at most 2 ·k possibilities to continue cutting at this point, but it can be
shown that it is only necessary to try the edges that go into the same
connected component that contains the current terminalpair. Also it
can be shown that groups of other cuts never have to be met more than
once.
If a rectangle is reached that is connected to the outer region (this is
the case if the other cut is a border cut or shares edges with a border
cut or shares edges with a cut that shares edges with a border cut
etc.), then the pair of scissors can also be reset to the starting point,
as if the border had been reached. Infact, it can be shown that in

1In this case, we would have m ≤ n ≤ 2 · k ⇒ |V | ≤ 4k2, so this case would be FPT
anyway
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this situation, it is useless not to reset. Also, the search for the first
cut must be modified, because the horizontal line may be crossed by a
different cut already. In this case, the continuous cutting algorithm can
also start at any rectangle, that the other cut crosses and any further
cut, that is reachable from it, crossing only edges that are already cut.
All in all this, case can have a running-time up to O∗((2 · k)k).

• The grid is flat (m ≤ k < n), si and ti are close to the upper and lower
borders, other cuts can be nearby.
In this case, si and ti can be separated by a cut that is more than k

steps away from si and ti. They can be separated by a cut that goes
from top to bottom (such cuts are called tectonic cuts). Now if m is
only a little bit smaller than k, then this is no problem. To be precise,
if m ≥ k

c
, then there can be at most c tectonic cuts, so choosing the

number of tectonic cuts i ≤ c and their starting points on the bottom
border (from which the 3k algoritm can be started) before running the

algorithms from above costs only a factor of
∑c

i=1 |V |
i = |V |c+1−1

c−1
in the

running-time.

To understand the general algorithm, think back to the polynomial
algorithm for paths (3.1). W.l.o.g. assume that for all terminalpairs
{sj, tj} ∈ P, tj is the terminal with the larger x coordinate. From now
on, {si, ti} ∈ P will not be chosen arbitrarily anymore. Choose a (still
connected) terminalpair whose ti is farthest to the left. Possibly {si, ti}
must be cut by an island- border- or archipelago cut, so the methods
from above must also be tried. To find a tectonic cut, distinguish two
cases:

– Tectonic cuts that do not cross other cuts: Like in the
polynomial algorithm for paths, there has to be a cut to the left
of ti (unless si has the same x-coordinate as ti, but in this case, the
terminals are closer together than k steps, so the correct cut would
also be found by the search for a border cut) and any continuous
cut on the left of ti can be straightened and moved to the right
without downgrading the solution, until ti is met. It might pay
off to move some cuts further to the right, but since at least one
cut has to be on the left of ti, there is an optimal multicut that
contains the edge on the left of ti if {si, ti} has to be cut by a
tectonic cut. The continuous cutting algorithm could be started
from there, but infact such a cut would have been found by the
search for a border cut already, so this case is already covered.
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The only change to the algorithm, that is required for this case,
is the choice of {si, ti}.

Note: if the edge on the left of ti was already cut, then any tectonic
cut further to the left, that uses no other cuts, could be improved
by moving it to the right and using this cut. So in that case, any
tectonic cut that crosses no other cuts, would not be subset of any
optimal solution.

– Tectonic cuts that cross other cuts: Instead of using a
tectonic cut close to ti, it might be cheaper to use a tectonic
cut that crosses other cuts (that can be far away from si and ti).
Luckily there are at most k other cuts, at which the continuous
cutting algorithm can be started.

The running-time of the algorithm is the product of the running-time of the
searches for the individual cuts. The search for an individual cut starts with
3 · k branches and has 3 branches, as long as no other cut is encountered. In
that case, there are up to k branches and since there are at most k individual
cuts, the running-time is bounded by O∗((3k)k).

Although this is an FPT running-time, it is quite unpleasant, but keep in
mind that only the first cuts and the archipelago cuts cause many branches.
The sum of all cuts must be ≤ k, so either there are not many other cuts
that can be reused (so other cuts will not often be encountered) or the other
cuts are not large (so if other cuts are encountered, then there are not many
branches), or there are not many cuts left to separate si from ti (so the
rest of the recursion tree will not have a large height). Also, a search for a
subsequent cut is started only in branches where the cutting algorithm has
found a full cut for the last terminalpair. So usually the running-time will
stay closer to 3k.

Uniform grids have ∆ ≤ 4, so if k ≥ 4 · l, then lemma 6.2.4 says that the
instance is solvable. Hence k ≤ 4 · l can be assumed and therefore lemma
1.4.1.1 together withtheorem 4.2.1 implies that Min-Multicut is also FPT
in ({l, k}\{k}) ∪ {l} = {l} on uniform grids.

The uniformity was only used to be able to move tectonic cuts to the
right without downgrading the solution. In large grids, tectonic cuts are
impossible, so it can also be concluded that Min-Multicut ist FPT in {k}
on large grids with real capacities ≥ 1.
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An interesting fact is that cutting an edge in a planar graph is the same
as contracting an edge in its dual graph (see definition 11.6 in [91]).
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Chapter 6

Reduction rules

If it is certain that an edge e will be part of the multicut, then it can just be
removed and k can be decreased by c(e). If it is certain that an edge e will
not be part of the multicut, then it is easy to see that e can be contracted,
if the graph is undirected. In directed graphs, this is not the case, because
contracting an arc might create paths that did not exist before, as fig. 6.1
shows. Redirecting the inbound arcs of x to the positive neighborhood of y

s1 x

t2

y t1

s2

s1
vxy

t2

t1

s2

Figure 6.1: The left network has a multicut of size 1 without {x, y}, but the
right network has no multicut of size < 2.

might increase the size of a minimum multicut. So the only possibility to
deal with excluded arcs seems to be marking them as excluded, which is also
what is done in literature.

Lemma 6.0.2. In undirected networks, if there are two vertices x, y such
that the min-cut of (V,E, x, y, c) has size > k, then x and y can be fused
(repaced by a new vertex z that inherits the neighbors of x and y)

Proof. If after cutting any set of edges with weight ≤ k, there is a path v−x
and a path y −w left, then there is a path v− x− y −w because with a cut
of weight ≤ k, not all paths x − y can be destroyed because the min-cut is

79
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> k. Therefore, fusing x and y does not change reachability w.r.t. any cut
≤ k.

In directed graphs, the previous lemma is not applicable that easily
because again, fusing vertices in directed graphs might create paths that
did not exist before. In directed graphs, vertices can be fused as follows: If
there is a sequence of vertices (v1, v2, · · · , vq−1, vq = v1) such that for every
i = 1, · · · , q − 1 there is either an excluded arc (vi, vi+1) ∈ E or a min-cut
of (V,E, vi, vi+1, c) has size > k, then all vertices v1, · · · , vq−1 can be fused.
Such a sequence can be found in polynomial time [21] by computing the
strongly connected components of an auxiliary digraph.
Whenever there is a pair of vertices (x, y) such that a min-cut (V,E, x, y, c)
has size > k, an excluded arc can be added, to simplify further computations.

In the following, some new terminology is used. If {x, y} ∈ P, then x and
y are P-neighbors . If {x, y} ∈ P and y is a leaf with neighbor y′, then x

and y′ are quasi-P-neighbors . A set of leaves, that have the same neighbor
is a group, Gr(x) is the group of leaves, that contains x (including x). If
{x, y} ∈ P and x and y are in the same group, then {x, y} is called a group
request . Let T a tree. The internal tree T ′ is the tree that is obtained
from T by deleting all leaves of T .

• I1 is the set of leaves of T ′

• I2 is the set of vertices, that have degree-2 in T ′

• I+
2 is the set of I2-vertices, that are adjacent to leaves in T . I−2 = I2\I

+
2

• I3 is the set of vertices that have degree ≥ 3 in T ′

• L1, L2 and L3 are the leaves of T whose neighbor is in I1, I2 or I3
respectively

• Lbad
2 is the set of L2 leaves which have a group request. Lgood

2 = L2\L
bad
2

A caterpillar component is an inclusion-maximal, connected set of I1 and
I2 vertices together with the leaves attached to them. The I1 and I2 vertices
are the backbone of the caterpillar component.

6.1 Necessary criteria

Lemma 6.1.1. If max-flow of (V,E, si, ti, c) > k for an i ∈ {1, · · · , l}, then
the instance is not solvable.
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Proof. For any C ⊆ E with
∑
e∈C

c(e) ≤ k, there is a path si− ti in (V,E−C),

because otherwise C would be a cut for si − ti with a value smaller than the
magnitude of the max-flow between si and ti, which contradicts Max-Flow
= Min-Cut.

Lemma 6.1.2. If (v, v) ∈ P for some vertex v, then the instance is not
solvable.

Proof. Even if C = E is used as cut, v is reachable from v, since the path
(v) starts in v, ends in v and uses no edges that are not in E\C = ∅.

6.2 Sufficient criteria

All criteria in this section implicitly assume si 6= ti for all {si, ti} ∈ P (see
lemma 6.1.2).

Lemma 6.2.1. If
l∑

i=1

max-flow of (V,E, si, ti, c) ≤ k, then the instance is

solvable.

Proof. The union of all si − ti cuts is a sufficiently small multicut.

This property can be computed in O(n5) for general (di)graphs with
positive real capacities, using an O(n3) flow-algorithm |P| ≤ n2 times.

Lemma 6.2.2. For undirected graphs: if

l∑

i=1

min{d(si), d(ti)} ≤ k

then the instance is solvable.

Proof. The precondition of 6.2.1 is satisfied, because every terminalpair can
be cut, using all incident edges of si or ti.

Lemma 6.2.3. For digraphs: if

l∑

i=1

min{d+(si), d
−(ti)} ≤ k

then the instance is solvable.

Proof. The precondition of 6.2.1 is satisfied, because every terminalpair can
be cut, using all outbound arcs of si or all inbound arcs of ti.
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Lemma 6.2.4. If ∆(G) ≤ k
l
, then the instance is solvable.

Proof. The precondition of lemma 6.2.2 is satisfied:

l∑

i=1

min{d(si), d(ti)} ≤
l∑

i=1

d(si)

≤
l∑

i=1

∆(G)

= l · ∆(G)

≤ l ·
k

l
= k

Lemma 6.2.5. If ∆+(G) ≤ k
l

or ∆−(G) ≤ k
l
, then the instance is solvable.

Proof. Analogous to lemma 6.2.4, the precondition of lemma 6.2.3 is
satisfied.

Lemma 6.2.6. For uniform (di)graphs: if |E| ≤ k, then the instance is
solvable.

Proof. E is a sufficiently small multicut.

Lemma 6.2.7. For non-uniform (di)graphs: if
∑
e∈E

c(e) ≤ k, then the

instance is solvable.

Proof. E is a sufficiently small multicut.

Lemma 6.2.8. For non-uniform (di)graphs: if |E| ·max {c(e)|e ∈ E} ≤ k,
then the instance is solvable.

Proof. E is a sufficiently small multicut.

Lemma 6.2.9. For uniform undirected graphs: if
(

n

2

)
≤ k, then the instance

is solvable. For uniform digraphs: if 2
(

n

2

)
≤ k, then the instance is solvable.

Proof. E is a sufficiently small multicut.

Lemma 6.2.10. If max-flow of (V
.
∪ {s, t}, E

.
∪ {(s, si), (ti, t)|(si, ti) ∈

P}, s, t, c′) ≤ k, with

c′(e) =

{
c(e) if e ∈ E∑

e∈E

c(e) otherwise

then the instance is solvable.

Proof. It is even possible to separate all si from all tj with k cuts.
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6.3 Generalizations of reduction rules for

trees

The first 8 reduction rules in this section come from Guo and Niedermeier
[53] and guarantee kernels of size O(k3k) on uniform trees. The last 3 rules
are by Bousquet, Daligault, Thomassé and Yeo [12] and guarantee kernels
of size O(k6) on uniform trees. Rule number 2, 4 and 5 are used by both
parties, but they are named differently. Here they carry both names under
which they are used.

6.3.1 Idle edge

Lemma 6.3.1.1. If an edge e = {x, y} ∈ E is not on any path from an si

to ti, then no optimal multicut C contains e.

Proof. If C is a multicut and e ∈ C, then putting e back into E cannot
reestablish a path from an si to its ti, because this would mean that e is on
a path from this si to this ti. So there is no si − ti path in (V,E − (C − e)),
which means that C − e is a smaller multicut than C and hence C is no
optimal multicut.

To test whether an edge {x, y} is idle, it must be tested, whether there is
a terminalpair {si, ti} ∈ P, such that there is a path from si to ti, containing
{x, y}.

Lemma 6.3.1.2. In undirected graphs, there exists a path si − ti, containing
{x, y} if and only if there are 2 (vertex-)disjoint paths si − x and y − ti or 2
(vertex-)disjoint paths si − y and x− ti.

Proof. If there exist 2 disjoint paths (si = x1, · · · , xq = x) and (y =
y1, · · · , yr = ti) or (si = y1, · · · , yq = y) and (x = x1, . . . , xr = ti),
then there is a path (si = x1, · · · , xq = x, y = y1, · · · , yr = ti) or
(si = y1, · · · , yq = y, x = x1, · · · , xr = ti) from si to ti, containing {x, y}.
The (vertex-)disjointness ensures that the constructed walk is indeed a path.

If there is a path from si to ti, containing {x, y}, then either x occurs
in the path first or y occurs in the path first, so the path has the form
(si, · · · , x, y, · · · , ti) or (si, · · · , y, x, · · · , ti). In the first case, there are the 2
disjoint paths si − x and y − ti. In the second case, there are the 2 disjoint
paths si − y and x− ti.

Lemma 6.3.1.3. In directed graphs, there exists a path si − ti, containing
(x, y) if and only if there are 2 (vertex-)disjoint paths si − x and y − ti.
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Proof. If there exist 2 disjoint paths (si = x1, · · · , xq = x) and (y =
y1, · · · , yr = ti), then there is a path (si = x1, · · · , xq = x, y = y1, · · · , yr =
ti) from si to ti, containing (x, y). The (vertex-)disjointness ensures that the
constructed walk is indeed a path.

If there is a path from si to ti, containing (x, y), then x occurs in the path
first, so the path has the form (si, · · · , x, y, · · · , ti). There are the 2 disjoint
paths si − x and y − ti.

Thus, to identify an idle edge, an algorithm for 2 disjoint paths can be
used 2 · |P| ≤ 2 · n2 times. For digraphs, the algorithm must be applied only
|P| ≤ n2 times. The k Disjoint Paths problem is FPT in k [85, 84], so for
constant k = 2, this can be tested in O(f(2) · p(n)) = O(p(n)). See also [88].

To identify all idle edges, this must be tested for all edges or all arcs, so
the total running-time is

O(|E| · 2 · |P| · p(n)) ⊆ O

(
n2

2
· 2 · n2 · p(n)

)
= O(n4 · p(n))

for undirected graphs and

O(|E| · |P| · p(n)) ⊆ O(n2 · n2 · p(n)) = O(n4 · p(n))

for directed graphs.

6.3.2 Unit path / Unit request

Lemma 6.3.2.1. If there is an edge e = {si, ti} ∈ E, then every multicut C
contains e.

Proof. If e 6∈ C, then there is a path (si, ti) using e in (V,E − C) and hence
C is no multicut.

The argument stays valid for non-uniform (di)graphs. There is an
obvious O(n4) algorithm to find such edges and depending on the used data
structures, they can also be found in O(n2).

This reduction rule is a special case of the overloaded edge rule (6.3.6).
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6.3.3 Dominated edge

If there are edges e, e′ ∈ E such that every si − ti path, which contains e,
contains e′ too, then e can be excluded. This is the case because if a multicut
C contains e, then (C−e)∪{e′} is a multicut that is at least as good as C, so
excluding e from the search does not make solvable instances unsolvable and
excluding an edge can never make an unsolvable instance solvable. This holds
true for uniform (di)graphs, but for non-uniform (di)graphs, c(e) ≥ c(e′)
must also be satisfied, because as you can see in fig. 6.2, abandoning

s1, s2 t1

t2

3 1

1

Figure 6.2: The edges of weight 1 are a multicut with total weight 2, whereas
the dominated edge rule without the c(e) ≥ c(e′) requirement would exclude
these edges, leaving only the edge of weight 3 to cut.

this requirement can cause non-optimal results. In non-uniform (di)graphs,
cutting multiple cheap edges can be overall cheaper, than cutting less, but
more expensive edges.

To find all dominated edges, it can be tested for all O(|E| · (|E| − 1)) ⊆
O(n4) pairs of edges e, e′, whether e′ dominates e.

Lemma 6.3.3.1. Let (V,E,P) an instance of the Min-Multicut problem.
An edge or arc e′ dominates an edge or arc e if and only if e is idle in
(V,E − e′,P).

Proof. Let e′ dominate e. This by definition means that all si − ti paths,
which contain e, contain e′ also. Therefore all si − ti paths that contain
e, are destroyed by removing e′ and therefore there is no si − ti path in
(V,E − e′,P) that contains e, which by definition means that e is idle in
(V,E − e′,P).

Let e be idle in (V,E−e′,P). This by definition means that no si−ti path
in (V,E−e′,P) contains e. This implies that no si−ti path in (V,E,P) that
contains e, is not destroyed by removing e′ and hence e′ is on every si − ti
path that contains e and this by definition means that e′ dominates e. (Note:
this also shows that idle edges are dominated by all other edges)
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So to find all dominated edges, idleness can be tested O(|E|2) times.
Idleness can be tested in O(|P| · p(n)), see 6.3.1, so the overall running-time
for the dominated edge rule is

O(|E|2 · |P | · p(n)) ⊆ O(n6 · p(n))

for uniform (di)graphs.
For non-uniform (di)graphs, this is also true, but it is only half the truth,

because an edge e might be dominated by a set E ′ of edges, which have∑
e′∈E′

c(e′) ≤ c(e) and e is idle in (V,E−E ′,P). This property (full dominated

edge) however does not seem to be FPT in k unless Min-Multicut is FPT
in k.

A different generalization of the rule is the following:

Lemma 6.3.3.2. If an {si, ti} ∈ P is a separator and there is a component X
of (V −{si, ti}, E,P) such that there is no terminal in X, then every min-cut
of (X ∪ {si, ti}, E ∩ P2(X ∪ {si, ti}), si, ti, c) is subset of a min-multicut.

Proof. Let C a min-multicut. Successively delete the edges from the network,
that are not inside X. In the resulting instance, every remaining sj − tj
path passes through X and thus it passes si and ti. Therefore, {si, ti}
dominates all other terminalpairs, so all of them can be removed from P.
The resulting network has exactly one terminalpair ({si, ti}), so it is a single-
commodity network and using a min-cut C ′ for it instead of C ∩ E(X)
would also ultimately disconnect the last terminalpair, so (C\E(X)) ∪ C ′

would be a multicut that would be smaller than the min-multicut C, unless
|C∩E(X)| = |C ′|, in which case C∩E(X) is also a min-cut for the constructed
network.

6.3.4 Dominated path / Inclusion

The dominated path rule for trees says that, if there are two distinct
terminalpairs {si, ti} and {sj, tj} such that the si − ti path contains sj

and tj , then {si, ti} can be removed from P, because any multicut for
(V,E,P−{si, ti}) must cut {sj, tj}, which also destroys the si−ti path. This
concept is independent of capacities, so the rule also works for non-uniform
trees. In general, there can be more than one path between si and ti, so the
existence of a path (si, · · · , sj, · · · , tj , · · · , ti) or (si, · · · , tj, · · · , sj, · · · , ti) is
not a sufficient criterion anymore.
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In general graphs, {si, ti} can be removed, if every si − ti path crosses
both sj and tj . This can be tested in polynomial time by testing whether
there is an si − ti path in (V − sj, E) or in (V − tj, E). If in one case such a
path exists, then the rule is not applicable, because if (w.l.o.g.) there is an
si − ti path in (V − sj , E), then this path does not cross both terminals, so
separating {sj, tj} does not automatically separate {si, ti} and thus {sj , tj}
does not dominate {si, ti}.
These two tests can be done using Dijkstra’s algorithm twice, so this
takes O(2 · n · log(n)). To find all dominated paths, one can test for all
O(|P|2) ⊆ O(n4) pairs of terminalpairs whether one dominates the other,
which yields a running-time of O(2 · |P|2 · n · log(n) · 2) ⊆ O(n6).
From the properties it follows that sj and tj must be cut vertices. Both
separate the component that contains si from the component that contains
ti.

Different si − ti paths might be dominated by different terminalpairs, so
the general rule would be that a terminalpair {si, ti} is dominated by a set
of terminalpairs P ′ ⊆ P, iff every si − ti path contains sj and tj for some
{sj, tj} ∈ P ′. Note that every path needs to contain both terminals of one
terminalpair, but the terminalpair may differ between different si − ti paths.
Constrained to trees, the generalized version is equivalent to the original
rule for trees, so for trees, this is not a true generalization and thus, the
polynomiality of the rule for trees is retained.

It is easy to see that, if a graph has a structure as in fig. 6.3, then {si, ti} is
dominated by P ′ = {{sij , tij}|j = 1, · · · , q}. The example in fig. 6.4, due to

si ti

...

si1 ti1

si2 ti2

tiq
siq

Figure 6.3: Structure of a graph that has a generalized dominated path

J. Kneis, shows an instance that has a dominated path {s1, t1}, but not such
a structure. So having a structure as in fig. 6.3 is only a sufficient, but not a
necessary criterion. For general graphs, this structure is still a generalization
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s1

s2, s3

s4, s5

t2, t4

t3, t5

t1

Figure 6.4: A graph that has a dominated path, but the generalized rule does
not apply

of the first rule for general graphs and it can be tested in polynomial time.
Because of rule unit path, it can be assumed that the components between
the sij and tij are not empty, so in component j, there exists an x ∈ V

such that all si − x and ti − x paths contain sij or tij . This means that
{sij , tij} is an ({si, ti}, {x}) separator. To test whether the rule applies, find
an {sij , tij} ∈ P which separates {si, ti} from some x ∈ V . Successively
remove such sij and tij from V until either si is disconnected from ti (then
the rule is applicable and {si, ti} can be deleted from P) or no such {sij , tij}
can be found anymore (in this case, the rule is not applicable).

6.3.5 Disjoint paths / Disjoint requests

If there are k+1 or more edge-disjoint paths between terminalpairs, then the
instance is not solvable. Let C a multicut with |C| ≤ k. According to the
pigeonhole principle [36], at least 2 paths have to be cut by the same edge
e ∈ C. Therefore e is on both of these paths, which is a contradiction to
the assumed edge-disjointness of the paths. This property is computable in
polynomial time for trees (see 2.2) so the rule is feasible for this case, but in
general, computing the property is NP-complete [2], even for planar graphs
[74].
Although the k-Disjoint Paths problem is FPT in k [85, 84], this does not
help because these algorithms require l = k. The general case appears to be
as hard as Min-Multicut, but there is actually an even stronger rule that
is applicable in polynomial time on general graphs.

In 2.2, 2.3 and 3.4 it was discussed that

max-imf ≤ max-mf ≤ min-mc ≤ max-mf · log(l)

and it is clear that the number of disjoint paths is ≤ max-imf because on
every disjoint path, there can be a separate integral flow. So it is possible
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to use linear programming (see 2.1.1) to determine the max-multif low and
conclude insolvability if k < max-mf (which is a situation that arises earlier
than k < number of disjoint paths) or solvability if k ≥ max-mf · log(l).

6.3.6 Overloaded edge

If there is an edge e ∈ E and at least k+1 terminalpairs that have a path of
length 2 containing e, then e can be cut. Actually Niedermeier and Guo say
that e can be contracted, k can be reduced by 1 and all terminalpairs can be
removed that are separated by e. This may lead to the same result for trees,
but cutting e is formally more accurate and removing a terminalpair from P,
just because one path is destroyed, leads to false results in general graphs.
Contracting an arc can also change the result in directed trees (remember
fig. 6.1).
It might seem questionable, whether this rule holds true for general graphs,
where additional paths for the terminalpairs can exist. To see that the rule
indeed holds true, one must consider that if e was not cut, then the other
k + 1 (or more) edges of the paths would have to be cut.

In non-uniform (di)graphs, less than k such terminalpairs may be
sufficient for an edge to be overloaded, because the sum of the other capacities
can be greater than k, which already makes the above statement true. So for
non-uniform, undirected graphs, an edge {x, y} is overloaded iff

∑

z∈{z|{x,z}∈P∧{y,z}∈E}

c({y, z}) +
∑

z∈{z|{y,z}∈P∧{x,z}∈E}

c({x, z}) > k

For non-uniform, directed graphs, an arc (x, y) is overloaded iff

∑

z∈{z|(x,z)∈P∧(y,z)∈E}

c((y, z)) +
∑

z∈{z|(z,y)∈P∧(z,x)∈E}

c((z, x)) > k

These properties can clearly be computed in polynomial time.

The basic idea behind this rule is: not cutting the edge would be like
contracting it and then there would be more than k disjoint paths / multiflow
> k. So this rule can be generalized in the following way: If the network
violates any necessary criterion after contraction of e, then e must be part
of a min-multicut. This rule is polynomial as long as all tested neccessary
criteria are polynomial (and the number of tested criteria is polynomial).
This includes the generalized test for disjoint paths. In directed networks,
an arc must be part of a min-multicut, if after excluding it (remember the
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discussion behind Lemma ) there would be a sequence of vertices (v1, · · · , vq)
with v1 = vq such that for every i = 1, · · · , q − 1 either there is an excluded
arc (vi, vi+1) or the min-cut of (V,E, vi, vi+1, c) is larger than k and fusing
v1, · · · , vq−1 would lead to a network that violates a necessary criterion.

Note: {v, v} 6∈ P is a necessary criterion. Therefore the unit path rule is
implied by the generalized version, so it can be removed.

6.3.7 Overloaded caterpillar

If there is a vertex v and at least k+2 vertices u1, · · · , uk+2 that are within the
same caterpillar-component C, but in a different caterpillar-component than
v and {{v, ui}|i = 1, · · · , k+2} ⊆ P, then remove (one of) the terminalpairs
{v, ui} with maximum distance between v and ui.

The reason for this is that because of the pigeonhole principle, at least
two of the remaining k+1 terminalpairs have to be cut by the same edge. All
edges that are shared by any two of the terminalpairs, are on the common
path, so this cut also disconnects {v, ui}.

This rule is a special case of the common factor rule (6.3.10), because
the common factors of the paths {{v, uj}|j = 1, · · · , k + 2}\{{v, ui}} are all
subsets of the path {v, ui}, so the overloaded caterpillar rule can be omitted.

Niedermeier and Guo only required k + 1 such paths, which would be a
difference to common factor, since the common factor rule would require k+2
such paths, but the example in fig. 6.5 shows, that the rule is false if only k+1
paths are demanded. The paths {s′1, t

′
1}, · · · , {s

′
k, t

′
k} require k cuts. After

s1, · · · , sk+1 s′1 s′2 s′k

t′1, t1 t′2, t2 t′k, tk tk+1

...

Figure 6.5: An unsolvable instance that becomes solvable, if {sk+1, tk+1} is
removed

these, no cut is left to disconnect {sk+1, tk+1}. The overloaded caterpillar
rule would delete {sk+1, tk+1} from P, turning this unsolvable instance into
a solvable one.
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6.3.8 Overloaded L3 leaves

Niedermeier and Guo define this rule as follows: If there is a vertex v with
terminalpairs {v, u1}, · · · , {v, uk+1}, where u1, · · · , uk+1 are leaves within the
same L3-group, then remove {v, u1}, · · · , {v, uk+1} from P and instead put
{v, u} into P.

The basic idea behind this rule is: not disconnecting v from u would be
like fusing u and v, so the edges {u, u1}, · · · , {u, uk+1} would become k + 1
disjoint paths. So v must be disconnected from u and {u, v} dominates
{v, u1}, · · · , {v, uk+1}. This concept can be generalized in the following way:
if there are two vertices v, u such that the network violates any necessary
criterion if v and u are fused, then {v, u} can be added to P and all
terminalpairs that are dominated afterwards can be removed from P. This
rule is polynomial as long as all tested neccessary criteria are polynomial (and
the number of tested criteria is polynomial). This includes the generalized
test for disjoint paths.

On trees, the generalized rule is stronger than the original overloaded L3

leaves rule, because not all the disjoint paths need to be single edges {u, ui}, u
is not necessarily an I3 vertex and the disjoint paths can go through different
subtrees. Also the generalized version covers situations where {v, u} also
dominates terminalpairs in the opposite direction {u, v1}, · · · , {u, vq}.

The generalized version works for non-uniform graphs, because the
generalized disjoint paths rule works for non-uniform graphs, so it is not
necessary to have > k disjoint paths u− vi or v − ui, it is sufficient to have
> k flow between u− vi and v − ui total.

6.3.9 Unique direction

If there is a leaf s′′ with N(s′′) = {s}, s′ ∈ N(s) and for all terminalpairs
{s′′, t} that contain s′′, the path s′′ − t has the form (s′′, s, s′, · · · , t), then
contract {s, s′′} (it can be assumed that {s, s′′} 6∈ P, because of rule unit
path). The reason for this is that {s, s′} dominates {s, s′′}.

For inner vertices s with degree 2, there is a different rule1: Let N(s) =
{s′, s′′}. If for all terminalpairs {s, t} ∈ P that contain s, the path s− t has
the form (s, s′, · · · , t), then contract {s, s′′}. This is again possible because

1Due to confusing notation, it is hard to see that the vertices must have degree 2, but
in an e-mail conversation with Jean Daligault, it was clearified that this is meant.
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{s, s′} dominates {s, s′′}.

In non-uniform networks, c({s, s′}) ≤ c({s, s′′}) has to be required again,
but since this rule is a special case of the dominated edge rule, it can be
omitted.

6.3.10 Common factor

The rule for trees is the following: If there is a terminalpair {si, ti} ∈ P
and k + 1 terminalpairs {si1 , ti1}, · · · , {sik+1

, tik+1
} ∈ P such that for every

two of these terminalpairs {six , tix}, {siy , tiy}, all edges which are on the path
between six and tix and also on the path between siy and tiy (the edges in
the “common factor”) are also on the path between si and ti, then remove
{si, ti} from P. If the common factor of two pairs is empty, this also counts.
To cut the k+1 terminalpairs with k cuts, two of them have to be cut by the
same edge (pigeonhole principle). This edge has to be part of the common
factor and thus it also disconnects {si, ti}.
It must be explicitly demanded that the terminalpairs intersect the si − ti
path. The argument would stay valid without this requirement, but the
upcoming algorithm would not find external terminalpairs and this weaker
rule is sufficient for the proof of the polynomial kernel sizes.

As to the running-time: in general, the applicability of the rule sounds
like it is related to the Clique problem, which is W[1]-hard in k [41, 15].
Create an auxiliary graph with one vertex for every terminalpair and connect
vertices of terminalpairs for which the common factor is a subset of the si−ti
path. The rule is applicable, iff the resulting graph has a clique of size k+1,
but if the original graph is a tree, then the applicability can also be tested,
using a matching algorithm.
Informally, a set of terminalpairs X has to be found, which all intersect the
si− ti path such that the edges through which they enter and leave the path,
are all distinct. Create an auxiliary graph with a vertex for every edge, that
is incident to a vertex on the si − ti path, but that is not itself part of the
path. Connect the vertices of two edges e, e′, if there exists a terminalpair
{sj, tj} such that e and e′ are both on the sj − tj path. The construction so
far does not regard terminalpairs {sj, tj} ∈ P that have one terminal among
the vertices of the si − ti path (no terminalpair can have both terminals
on the si − ti path because such a terminalpair would dominate {si, ti}).
Collect these terminalpairs in a set Y ⊆ P. Such terminalpairs can be part
of X without any loss. Only from the auxiliary graph, the vertex has to be
deleted that stands for the edge through which the sj − tj path leaves the
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si − ti path.
In the original graph, rule common factor is applicable to {si, ti} iff the
auxiliary graph has a matching of size k − |Y | + 1 and since the Maximum
Matching problem is polynomial [33], the applicability of the rule in trees
is polynomial.

To incorporate external terminalpairs, one could also subtract a max-
multiflow from k − |Y | + 1, since external terminalpairs also consume cuts,
leaving less cuts for the terminalpairs intersecting the si−ti path. A problem
with this approach however is that these external terminalpairs might have
some intersection with the terminalpairs whose path intersect the si − ti
path, so depending on these intersections it might be better to peempt some
terminalpairs in the selection of the maximum matching.

The rule seems untransferable to general graphs. The common factors
of terminalpairs can be computed in polynomial time on general graphs,
because for every edge {x, y} it can be tested if there is an si − x − y − ti
or si − y − x − ti path and an sj − x − y − tj or sj − y − x − tj path (see
6.3.1.2). But a generalization of the rule would require every si − ti path
to cross every edge of the common factor of every pair of terminalpairs for
some set of terminalpairs. Maybe a tree-decomposition could be utilized to
test this property, but it is unclear what should be done, if a common factor
is not a path and the conditions for the applicability seem so odd, that the
rule probably would hardly ever be applicable.

6.3.11 Dominating wingspan

For caterpillars: Let x an L
good
2 vertex, attached to x′ ∈ I+

2 , so all paths
to his P-neighbors pass the caterpillars backbone. The wingspan of x is
the path between its closest quasi-P-neighbors in both directions xl and xr

(if in one direction there is no P-neighbor, then unique direction would be
applicable). The size of a wingspan is the number of Lgood

2 leaves pending
from the vertices of the wingspan.
The dominating wingspan rule now says: if rule common factor applies to
the path between xl and xr, then the edge incident to x can be contracted.

As before, there has to be a cut within the edges of the xl − xr path,
w.l.o.g. it is on the left of x′. Since xl is a closest quasi-P-neighbor, this
cut destroys all paths to terminalpairs over the left edge, so only paths to
the right remain (there are no group-requests by definition of Lgood

2 ). Now,
for every multicut that contains {x, x′}, an equally good multicut can be



94 CHAPTER 6. REDUCTION RULES

obtained by using the edge on the right of x′ instead of {x, x′}.
The rule can also be applied, if both terminals of a terminalpair are on the
xl − xr path, because here again, there has to be one cut between xl and xr

and the argument works as before. The argument also works, if x is an Lbad
2

leaf and it has exactly one group request and no P-neighbors in one direction
of the caterpillars backbone.

In general trees, there might be an I3 vertex x′l or x′r between x′ and a
closest quasi-P-neighbor in at least one direction. In this case, there might
be quasi-P-neighbors in different subtrees of x′l or x′r. So it has to be made
sure that still all paths in that direction are destroyed by a cut. This can
be done by using x′l instead of xl or x′r instead of xr respectively. Also, if
all P-neighbors of x in that direction are in the same subtree of x′l or x′r,
then the left or right boundary can be moved further into that subtree. In
this case, the other subtrees of x′l or x′r might even contribute to the set of
terminalpairs for the common factor rule.

If the quasi-P-neighbors are in multiple directions, then take the closest
quasi-P-neighbors from all directions z1, · · · , zq. If common factor applies to
all {zi, b}, where b is the farthest I1 or I2 vertex in the other direction, then
{x, x′} can also be contracted. This is the case because as before, there has to
be a cut between b and zi for i = 1, · · · , q. Either one of these cuts is between
b and the first I3 vertex on the paths to z1, · · · , zq (so the argument can be
applied as before) or all cuts are behind the first I3 vertex (so they disconnect
x from all P-neighbors in that direction and again, {x, x′} can be replaced
in any multicut by the first incident edge of x′ in the other direction).

Given its relationship to common factor, it is also unclear how this rule
can be transferred to general graphs.

6.4 Polynomial kernels in uniform trees

The proof works by showing boundaries on the sizes of all partitions of V
from the beginning of chapter 6.

Lemma 6.4.1. For general graphs: at most k2 + k components are attached
to any cut-vertex (for trees, this means ∆ ≤ k2 + k).

Proof. Let v ∈ V a cut-vertex. There can be at most k components in
(V − v, E) that contain an edge of a multicut ≤ k (pigeonhole principle).
For each of these components C, there can be at most k other components
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attached to v, that contain a P-neighbor of a vertex in C, because otherwise
the generalized L3-leaves rule would apply. So all further components
attached to v contain only idle edges and hence the component would be
removed.

• |I1| ≤ k because every I1-vertex has a group request (otherwise its edge
to the internal tree would dominate all its other incident edges or there
would be unit paths or idle edges). The group requests of different I1
vertices are edge disjoint, so if |I1| > k, then rule disjoint paths would
apply.

• |L1| ≤ k2 + k because every L1-leaf has a group request (to an L1-leaf
without group request, either the unique direction rule applies or it has
a unit path or idle edge) and if an L1-leaf had > k group requests, then
overloaded edge would apply. There are at most k L1-leaves whose
incident edge is part of a multicut ≤ k and each one of them has at
most k group requests.

• |Lbad
2 | ≤ k2 + k for the same reason.

• |I3| ≤ |I1| ≤ k because in any tree, the number of leaves is larger than
the number of vertices with degree > 2 (induction). This also holds for
the internal tree T ′.

• There are at most 2 · k − 1 caterpillar components. Every caterpillar
resides between I3 or I1 vertices. Select an arbitrary r ∈ I3 as root.
Map every caterpillar C to the I1 or I3 vertex, that C meets from above.
This is a bijection and since |I1 ∪ I3| ≤ 2 · k, there are at most 2 · k
caterpillars, but there is no caterpillar above r.

• |L3| ≤ k3 + k2 because ∆ ≤ k2 +k (Lemma 6.4.1), which also holds for
the ≤ k vertices in I3.

• |Lgood
2 | ∈ O(k4) complicated. The proof basically says that if there

was a large wingspan, then it would dominate many terminalpairs so
the dominating wingspan rule would apply. If there are only small
wingspans, then there cannot be many L

good
2 leaves in one caterpillar,

because this would entail that there are many wingspans, which
pairwise do not intersect, so the disjoint request rule would apply.
The claim then follows from the fact that there are at most 2 · k − 1
caterpillars.



96 CHAPTER 6. REDUCTION RULES

• |I+
2 | ≤ |Lgood

2 | ∈ O(k4) because every I+
2 vertex (by definition) has an

L2 leaf attached to it and every Lgood
2 leaf is attached to exactly one I+

2

vertex. By the pigeonhole principle, this implies |I+
2 | ≤ |Lgood

2 |.

• |I−2 | ∈ O(k6) complicated.



Chapter 7

Conclusion and perspectives

See [91] for denotation.

Min-Multicut is

• Polynomial on

– Uniform paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1

– Uniform cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1

– Uniform DAGs, if Multiway-Cut . . . . . . . . . . . . . . . . . . . . . . . . . 2.4

– Uniform trees, if Multiway-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . [19]

– Undirected multi-commodity networks with l ≤ 2 . . . . . . . . . . . 3.2

– Directed “multi”-commodity networks with l = 1 . . . . . . . . . . 1.3.4

• NP-complete on

– Uniform, undirected networks with l ≥ 3 . . . . . . . . . . . . . . . . . . 3.3.1

– Uniform, directed networks with l ≥ 2 . . . . . . . . . . . . . . . . . . . . . 3.3.2

– Uniform, undirected stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3

– Uniform, undirected trees with ∆ ≥ 3 . . . . . . . . . . . . . . . . . . . . . 3.3.4

– Uniform, undirected grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [9]

– Interval graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [52]

– Uniform caterpillars with ∆ = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.5

– Uniform, directed, acyclic graphs with ∆+ = ∆− = 2 . . . . . . 3.3.5

– Uniform 13-layer digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.5
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• Approximable to within

– A factor of log(l) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [47]

– A factor of O(r3) on Kr,r-free graphs . . . . . . . . . . . . . . . . . . . . . . . [37]

– A constant factor on planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . [37]

– A factor of 2 on trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [49]

– Arbitrary factors (PTAS) on uniform with bounded ∆ and tw [14]

• Not Approximable to (unless P=NP) within

– Arbitrary factors (no PTAS, no FPTAS) . . . . . . . . . . . . . . . . . . . . 3.4

– Constant factors unless Khot’s unique game conjecture is false [16]

– A factor of O(log(log(n))) unless Khot’s unique game conjecture
is false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [16]

• FPT in all supersets of

– {l, k} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2

– {l, tw} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3

– {tw((V,E ∪ P))} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.4

– {l,∆} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5

– {k,Λ} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5

• Not FPT (unless P=NP) in any subset of

– {∆, tw, pw, ν, χ, ω, b, σ, λ, δ, ϕ, µ, z} . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1

– {tw, pw, ν,Λ, dm, r, χ, ψ, ψs, ω, α0, β, γ, b, ir, σ, λ, δ, ϕ, µ, z,

n− ∆, n− Θ, n− χ′, n− χT , n− α, n− β0, n− |Γ|} . . . . . . . . . . 4.1

– {l, dm, r, δ, ϕ, σ, λ} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1

• FPT in {k} on

– Trees with integral capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.4

– Large grids with real capacities ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . 5.6

• FPT in {k} and {l} on

– Uniform stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1

– Stars with real capacities ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2
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– Uniform trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3

– Uniform grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6

• FPT in {d} on non-uniform trees, where d is the maximum number of
si − ti-paths that pass a vertex or edge . . . . . . . . . . . . . . . . . . . . . . . . . . [54]

• FPT in {l} on planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [6]

On uniform trees, Min-Multicut has kernels of size O(k6), so
Min-Multicut on uniform trees is in the important complexityclass
POLYKERNEL.
Min-Multicut is in the complexityclass XP (because of the O(Λk) ⊆ O(nk)
running time of the algorithm in 4.5) and in W [P ] ⊇W [t]∀t ∈ N (because to
find a solution, an NTM can nondeterministically write k integers between
1 and n2, which requires k · log(n2) = k · 2 · log(n) uses of indeterminism to
select k edges). For the definitions of XP and W[P], see [41].

The reduction rules for trees can be generalized

undirected directed trees
u n u n N R+

Idle edge P P P P P P ×
Unit path - - - - - - -

Simple dominated edge P P P P P P ×
Full dominated edge P P ×

Simple dominated path P P P P P P ×
Generalized dominated path P P P P P P ×

Full dominated path P P ×
Disjoint paths P P P P P P X

Overloaded edge P P P P P P X

Overloaded caterpillar - - - - - - -
Overloaded L3 leaves P P P P P P X

Unique direction - - - - - - X

Common factor ? ? ? ? ? ?
Dominating wingspan ? ? ? ? ? ?
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u uniform
n non-uniform
P a generalized version of the rule is applicable in polynomial time
- unit path is a special case of generalized overloaded edge

unique direction is a special case of dominated edge
overloaded caterpillar is a special case of common factor

? it is unclear whether there is an analogue in general graphs to the rule
empty the complexity of application of the rule is unknown
X, × is the generalization, restricted to trees, more

general than the original rule for trees?

The running-time of O∗(Λk) ⊆ O(nk) of the branching algorithm in 4.5
shows that for no constant k the problem is NP-complete, so lemma 1.4.1.2
cannot be applied to show fixed parameter intractability in k.

The greatest obstacle is that about every conjecture that would help
parameterizing the problem in k, is untrue. To quantify this statement, here
are several plausible conjectures that would be helpful, but that are untrue:

Conjecture 7.1. Every / some min-multicut contains a minimum cut of
some terminalpair.

Disproof.
In fig. 7.1, the min-cuts of s1 − t1 are {{s1, t1}, {t1, t2}, {t1, s2}} and

s1

t1

s2

t2

Figure 7.1:

{{s1, t1}, {s1, s2}, {s1, t2}} and the min-cuts of s2 − t2 are
symmetric. The minimum multicuts are {{s1, t1}, {s2, t2}, {s1, s2}, {t1, t2}}
and {{s1, t1}, {s2, t2}, {s1, t2}, {s2, t1}}. So every min-cut is diagonal to every
min-multicut.

Conjecture 7.2. Every / some min-multicut contains an edge that is part
of a min-cut for some terminalpair.

Disproof.
In fig. 7.2, the min-cut of terminalpair si−ti is solely {ei}. The unique min-
multicut is {e′1, e

′
2, e

′
3}, so every min-cut is disjoint to every min-multicut.
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s4

s1

s2

s3

t1

t2

t3

t4

e′1

e′2

e′3

e1

e2

e3

e4

Figure 7.2:

Conjecture 7.3. A min-multicut of every minor of (V,E) is contained in /
has a common edge with every / some min-multicut for (V,E).

Disproof.
In fig. 7.3, the unique min-multicut of the left network is {x, y}. Every

s tx y s t

Figure 7.3:

multicut of the right network contains at least 3 edges. This gap can
be arbitrarily larger, by using arbitrarily large complete subgraphs. This
example also shows that min-multicuts of minors don’t necessarily become
smaller. But to be fair, this conjecture is true as long as there is a min-
multicut, whose edges are not contracted in the construction of the minor.

Conjecture 7.4. Every / some min-multicut contains an edge that is part
of a min-multicut for some spanning tree.

Disproof.
In fig. 7.4, the min-multicut contains only the edge adjacent to t1, t2, but a
spanning tree might be cut along the parallel paths in between.

Conjecture 7.5. Every min-multicut for some subset of P is subset of a
min-multicut for P

Disproof.
In fig. 7.5, the min-multicut contains only the edge adjacent to t1, t2, but
{s1, s2} is a min-(multi)cut for P = {{s2, t2}}.
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s2 s1 t1, t2

Figure 7.4:

s2 s1 t1, t2

Figure 7.5:

Conjecture 7.6. There is a subset P ′ of P with size ≤ 2k, for which a
particular min-multicut remains a minimum multicut.

Disproof.
The conjecture is true. However this does not help, because the converse is
not true. Using e.g. color-coding to find this subset and computing a min-
multicut for it (using Marx’ algorithm, because with l ≤ 2k its running-time
becomes O∗(4k(2k−1)kk4k3

)) can result in a set of edges that is a min-multicut
for P ′, but not for P, as fig. 7.5 shows.

Despite all the obstacles, there is hope for solving the question whether
Min-Multicut is FPT or W[1]-hard in k.

Many of the reduction rules for trees (see section 6) apply to the block-
cutvertex graph (see definition 8.3 in [91]) of a general graph, so maybe the
number of blocks in a general graph can be limited by a function in k. So
the number of blocks might be a suitable property to limit the height of a
recursion tree of the compression-phase in an interative compression.

The disjoint path rule (6.3.5) implies that there are at most k paths
between a terminalpair and lemma 6.3.6 implies that the graph has no
complete subgraph Kq with q > k. This seems to limit the number of
crosslinks between the paths, so there might only be

(
k

2

)
classes of significant

edges, which would result in an O∗((k2)k) = O∗(k2k) algorithm. On the
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other hand, there seems to be no reason why the equivalence classes of one
terminalpair should have any impact on the cuts for any other terminalpair.

If there is an si − ti path with length ≤ k, then one of the edges on
that path has to be selected, which means there are k sub-problems with
parameter k − 1, so this branching will not violate an FPT running-time, if
it can be reached in the branches. Therefore Min-Multicut is FPT in k if
and only if it is FPT in k on instances, where the shortest si − ti path has
length > k. Lemma 6.3.6 implies that the graph has no complete subgraph
Kq with q > k. These properties together seem to imply that the graph
may be sparse, which might be a helpful property. On the other hand, the
problem is not FPT in tw, so sparseness might not help at all.

The argument for the fixed parameter tractability of k−Disjoint Paths
is that a graph with large treewidth contains a large grid, from which a
vertex can be removed (which reduces the treewidth) without destroying any
of the k paths, if they exist. Therefore the treewidth can be limited by a
function in k. This argument seems to stay valid for Min-Multicut, so it
seems reasonable to say that Min-Multicut is FPT in k if and only if it is
FPT in {k, tw}, but every vertex of the contained grid may be a terminal.
Removing a terminal should not be a good idea, but then again, a network
that contains a large grid with many terminals might not have a multicut of
size k, so this might not be a problem.

A promising approach to solving Min-Multicut instances in FPT time
is a 2-dimensional iterative compression: One could arrange sub-problems of
an instance in an (l−1)×(|E|−|V |−1) table. (V,E,P, c) could be put in the
upper right corner and for every step to the left, one edge from a cycle could
be removed (in a fixed order). For every step downwards, a terminalpair
could be removed. The bottom row would contain single-commodity Min-
Cut instances, which can be solved in polynomial time. The left column
would contain Min-Multicut instances on trees, which is FPT in k. So the
solutions for the left column and bottom row can be computed in sufficiently
short time and it might be possible to fill the other cells successively by
combining the solutions from below and from the left.

The common factor rule (6.3.10) sounds like it was related to Clique,
but on trees, the paths that are used together can be found using matching
algorithms. Maybe it would be possible to construct a Multicut instance
from a Clique instance G so that common factor is applicable (which may
be the case if the solution is sufficiently small) iff G has a clique of size k.
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This would imply W[1]-hardness, since Clique is W[1]-hard in k [41, 15].

One approach to a W[1]-hardness proof may be cutting edges in the
implicationgraph of Antimonotone-W[1] instances (which exist because
Antimonotone-W[1] instances are weighted 2-SAT instances), but this is
only a vague idea.
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PhD thesis, 1995.

[6] Cédric Bentz. Edge disjoint paths and multicut problems in graphs
generalizing the trees. Technical Report No 948, CEDRIC, 2005.

[7] Cédric Bentz. On the complexity of the multicut problem in bounded
tree-width graphs and digraphs. Discrete Applied Mathematics,
156(10):1908–1917, 2008. doi: 10.1016/j.dam.2007.09.013.

[8] Cédric Bentz, Marie-Christine Costa, Lucas Létocart, and Frédéric
Roupin. A bibliography on multicut and integer multiflow problems.
Technical report, 2004.

105



106 BIBLIOGRAPHY

[9] Cédric Bentz, Marie-Christine Costa, and Frédéric Roupin. Maximum
integer multiflow and minimum multicut problems in two-sided uniform
grid graphs. Journal of Discrete Algorithms, 5(1):36–54, 2007. doi:
10.1016/j.jda.2006.03.009.

[10] Hans L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. In STOC ’93: Proceedings of the
twenty-fifth annual ACM symposium on Theory of computing, San
Diego, CA, USA, May 16-18, 1993, pages 226–234. ACM, 1993. doi:
10.1145/167088.167161, isbn: 0-89791-591-7.

[11] Hans L. Bodlaender. Treewidth: Structure and algorithms. In Giuseppe
Prencipe and Shmuel Zaks, editors, SIROCCO 2007: Structural
Information and Communication Complexity, 14th International
Colloquium, Castiglioncello, Italy, June 5-8, 2007, Proceedings, volume
4474 of Lecture Notes in Computer Science, pages 11–25. Springer, 2007.
isbn: 978-3-540-72918-1.

[12] Nicolas Bousquet, Jean Daligault, Stéphan Thomassé, and Anders
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topologie. Fundamenta Mathematicae, 15:271–283, 1930.

[70] Edmund Landau. Handbuch der Lehre von der Verteilung der
Primzahlen. Teubner, 1909. 2 volumes. Reprinted by Chelsea, New
York, 1953.

[71] Tom Leighton and Satish Rao. An approximate max-flow min-cut
theorem for uniform multicommodity flow problems with application
to approximation algorithms. In FOCS ’88: Proceedings of the 29th
Annual Symposium on Foundations of Computer Science, White Plains,
NY, USA, October 24-26, 1988, pages 101–111. IEEE Computer Society,
1988. doi: 10.1109/SFCS.1988.21958, isbn: 0-8186-0877-3.

[72] Vishv M. Malhotra, M. Pramodh Kumar, and S. N. Maheshwari. An
O(|V |3) algorithm for finding maximum flows in networks. Information
Processing Letters, 7(6):277–278, 1978.

[73] Dániel Marx. Parameterized graph separation problems. Theoretical
Computer Science, 351(3):394–406, 2006. doi: 10.1016/j.tcs.2005.10.007.

[74] Matthias Middendorf and Frank Pfeiffer. On the complexity of the
disjoint paths problems. Combinatorica, 13(1):97–107, 1993.

[75] G. L. Nemhauser and L. E. Trotter. Vertex packings: Structural
properties and algorithms. Mathematical Programming, (8), 1975.

[76] Yu. E. Nesterov and A. S. Nemirovskii. An interior-point method for
generalized linear-fractional programming. Mathematical Programming,
69(1):177–204, 1995. doi: 10.1007/BF01585557.

[77] Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford
University Press, 2006. isbn: 0-198-56607-7.



BIBLIOGRAPHY 113

[78] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization,
approximation, and complexity classes. In STOC ’88: Proceedings
of the twentieth annual ACM symposium on Theory of computing
Chicago, IL, USA, May 02 - 04, 1988, pages 229–234. ACM, 1988. doi:
10.1145/62212.62233, isbn: 0-89791-264-0.
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